Skip to main content

Construction of a bacterial autoinducer detection system in mammalian cells


Quorum sensing (QS) is a cell density-dependent signaling system used by bacteria to coordinate gene expression within a population. QS systems in Gram negative bacteria consist of transcription factors of the LuxR family and their acyl homoserine lactone (AHL) ligands. We describe here a method for examining QS signaling systems in mammalian cells that uses engineered LuxR-type proteins from the opportunistic pathogen, Pseudomonas aeruginosa, which can function as AHL-dependent transcription factors. The engineered proteins respond to their cognate ligands and display sequence specific DNA binding properties. This system has several potential biotechnological and biological applications. It may be used to characterize any LuxR-type protein, screen animal and plant cell extracts or exudates for compounds that mimic or interfere with AHL signaling or to screen different cell types for AHL inactivating activities.



quorum sensing


acylhomoserine lactone


N-3-oxodocanoyl-homoserine lactone


N-butyryl homoserine lactone


N-3-oxoheptanoyl homoserine lactone


protein module containing three copies of the VP16 transcriptional activation domain (TAD) and the nuclear localization signal (NLS) from SV40 T antigen




Simple Modular Architecture Research Tool


autoinducer binding domain


helix-turn-helix DNA binding domain


  1. Fuqua C, Parsek MR, Greenberg EP. Regulation of gene expression by cell-to-cell communication: Acyl-Homoserine Lactone Quorum Sensing. Annual Review of Genetics 2001; 35:439–468.

    Article  PubMed  CAS  Google Scholar 

  2. Fuqua C, Winans SC, Greenberg EP. Census and consensus in bacterial ecosystems: the LuxR-LuxI family of quorumsensing transcriptional regulators. Annu Rev Microbiol 1996; 50:727–751.

    Article  PubMed  CAS  Google Scholar 

  3. Slock J, VanRiet D, Kolibachuk D, Greenberg EP. Critical regions of the Vibrio fischeri luxR protein defined by mutational analysis. J Bacteriol 1990; 172:3974–3979.

    PubMed  CAS  Google Scholar 

  4. Stevens AM, Greenberg EP. Transcriptional Activation by LuxR. In: Cell-Cell signaling in bacteria. Edited by Dunny GM, Winans SC. Washington, D.C.: American Society for Microbiology, 1999: 231–242.

    Google Scholar 

  5. Rumbaugh KP, Griswold JA, Hamood AN. Contribution of the regulatory gene lasR to the pathogenesis of Pseudomonas aeruginosa infection of burned mice. J Burn Care Rehabil 1999; 20:42–49.

    PubMed  CAS  Google Scholar 

  6. Rumbaugh KP, Griswold JA, Hamood AN. The role of quorum sensing in the in vivo virulence of Pseudomonas aeruginosa. Microbes Infect 2000; 2:1721–1731.

    Article  PubMed  CAS  Google Scholar 

  7. Smith RS, Iglewski BH. P. aeruginosa quorum-sensing systems and virulence. Curr Opin Microbiol 2003; 6:56–60.

    Article  PubMed  CAS  Google Scholar 

  8. Telford G, Wheeler D, Williams P, Tomkins PT, Appleby P, Sewell H, Stewart GS, Bycroft BW, Pritchard DI. The Pseudomonas aeruginosa quorum-sensing signal molecule N-(3-oxododecanoyl)-L-homoserine lactone has immunomodulatory activity. Infect Immun 1998; 66:36–42.

    PubMed  CAS  Google Scholar 

  9. Smith RS, Fedyk ER, Springer TA, Mukaida N, Iglewski BH, Phipps RP. IL-8 production in human lung fibroblasts and epithelial cells activated by the Pseudomonas autoinducer N-3-oxododecanoyl homoserine lactone is transcriptionally regulated by NF-kappa B and activator protein-2. J Immunol 2001; 167:366–374.

    PubMed  CAS  Google Scholar 

  10. Smith RS, Harris SG, Phipps R, Iglewski B. The Pseudomonas aeruginosa quorum-sensing molecule N-(3- oxododecanoyl)homoserine lactone contributes to virulence and induces inflammation in vivo. J Bacteriol 2002; 184:1132–1139.

    Article  PubMed  CAS  Google Scholar 

  11. Smith RS, Kelly R, Iglewski BH, Phipps RP. The Pseudomonas autoinducer N-(3-oxododecanoyl) homoserine lactone induces cyclooxygenase-2 and prostaglandin E2 production in human lung fibroblasts: implications for inflammation. J Immunol 2002; 169:2636–2642.

    PubMed  CAS  Google Scholar 

  12. Williams SC, Patterson EK, Carty NL, Griswold JA, Hamood AN, Rumbaugh KP. Pseudomonas aeruginosa autoinducer enters and functions in mammalian cells. J Bacteriol 2004; 186:2281–2287.

    Article  PubMed  CAS  Google Scholar 

  13. Chugani SA, Whiteley M, Lee KM, D’Argenio D, Manoil C, Greenberg EP. QscR, a modulator of quorum-sensing signal synthesis and virulence in Pseudomonas aeruginosa. PNAS 2001; 98:2752–2757.

    Article  PubMed  CAS  Google Scholar 

  14. Gambello MJ, Iglewski BH. Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression. J Bacteriol 1991; 173:3000–3009.

    PubMed  CAS  Google Scholar 

  15. Kalderon D, Roberts BL, Richardson WD, Smith AE. A short amino acid sequence able to specify nuclear location. Cell 1984; 39:499–509.

    Article  PubMed  CAS  Google Scholar 

  16. Williams SC, Baer M, Dillner AJ, Johnson PF. CRP2 (C/EBPb) contains a bipartite regulatory domain that controls transcriptional activation, DNA-binding activity and cell specificity. EMBO J 1995; 14:3170–3183.

    PubMed  CAS  Google Scholar 

  17. Whiteley M, Greenberg EP. Promoter specificity elements in Pseudomonas aeruginosa quorum-sensing-controlled genes. J Bacteriol 2001; 183:5529–5534.

    Article  PubMed  CAS  Google Scholar 

  18. Rahim R, Ochsner UA, Olvera C, Graninger M, Messner P, Lam JS, Soberon-Chavez G. Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di-rhamnolipid biosynthesis. Mol Microbiol 2001; 40:708–718.

    Article  PubMed  CAS  Google Scholar 

  19. Chhabra SR, Harty C, Hooi DS, Daykin M, Williams P, Telford G, Pritchard DI, Bycroft BW. Synthetic analogues of the bacterial signal (quorum sensing) molecule N-(3-oxododecanoyl)-L-homoserine lactone as immune modulators. J Med Chem 2003; 46:97–104.

    Article  PubMed  CAS  Google Scholar 

  20. Passador L, Tucker KD, Guertin KR, Journet MP, Kende AS, Iglewski BH. Functional analysis of the Pseudomonas aeruginosa autoinducer PAI. J Bacteriol 1996; 178:5995–6000.

    PubMed  CAS  Google Scholar 

  21. Hoch JA, Silhavy TJ. Two component signal transduction. Washington, DC: American Society of Microbiology; 1995.

    Google Scholar 

  22. Stock AM, Robinson VL, Goudreau PN. Two-component signal transduction. Annu Rev Biochem 2000; 69:183–215.

    Article  PubMed  CAS  Google Scholar 

  23. Vannini A, Volpari C, Gargioli C, Muraglia E, Cortese R, De Francesco R, Neddermann P, Marco SD. The crystal structure of the quorum sensing protein TraR bound to its autoinducer and target DNA. EMBO J 2002; 21:4393–4401.

    Article  PubMed  CAS  Google Scholar 

  24. Neddermann P, Gargioli C, Muraglia E, Sambucini S, Bonelli F, De Francesco R, Cortese R. A novel, inducible, eukaryotic gene expression system based on the quorumsensing transcription factor TraR. EMBO Rep 2003; 4:159–165.

    Article  PubMed  CAS  Google Scholar 

  25. Fuqua WC, Winans SC, Greenberg EP. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 1994; 176:269–275.

    PubMed  CAS  Google Scholar 

  26. Ochsner UA, Reiser J. Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 1995; 92:6424–6428.

    Article  PubMed  CAS  Google Scholar 

  27. Ventre I, Ledgham F, Prima V, Lazdunski A, Foglino M, Sturgis JN. Dimerization of the quorum sensing regulator RhlR: development of a method using EGFP fluorescence anisotropy. Mol Microbiol 2003; 48:187–198.

    Article  PubMed  CAS  Google Scholar 

  28. Medina G, Juarez K, Diaz R, Soberon-Chavez G. Transcriptional regulation of Pseudomonas aeruginosa rhlR, encoding a quorum-sensing regulatory protein. Microbiology 2003; 149:3073–3081.

    Article  PubMed  CAS  Google Scholar 

  29. Chun CK, Ozer EA, Welsh MJ, Zabner J, Greenberg EP. Inactivation of a Pseudomonas aeruginosa quorum-sensing signal by human airway epithelia. Proc Natl Acad Sci USA 2004; 101:3587–3590.

    Article  PubMed  CAS  Google Scholar 

  30. Tateda K, Ishii Y, Horikawa M, Matsumoto T, Miyairi S, Pechere JC, Standiford TJ, Ishiguro M, Yamaguchi K. The Pseudomonas aeruginosa autoinducer N-3-oxododecanoyl homoserine lactone accelerates apoptosis in macrophages and neutrophils. Infect Immun 2003; 71:5785–5793.

    Article  PubMed  CAS  Google Scholar 

  31. Mathesius U, Mulders S, Gao M, Teplitski M, Caetano-Anolles G, Rolfe BG, Bauer WD. Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc Natl Acad Sci USA 2003; 100:1444–1449.

    Article  PubMed  CAS  Google Scholar 

  32. Teplitski M, Robinson JB, Bauer WD. Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol Plant Microbe Interact 2000; 13:637–648.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Kendra P. Rumbaugh Ph.D..

Additional information

Published: December 30, 2004.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shiner, E.K., Reddy, S., Timmons, C. et al. Construction of a bacterial autoinducer detection system in mammalian cells. Biol. Proced. Online 6, 268–276 (2004).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI:

Indexing terms

  • Pseudomonas aeruginosa autoinducer
  • LuxR protein