Skip to main content

A simple and non-radioactive technique to study the effect of monophosphoesters on matrix vesicle-mediated calcification

Abstract

A simple and non-radioactive technique based on O-cresolpthalein complexone assay was developed to study in vitro non-radioactive calcium (40Ca) deposition by isolated matrix vesicles. Using this technique, the effect of various phosphoester substrates including ATP, AMP and β-GP on in vitro MV-calcification was studied. O-cresolpthalein complexone assay with non-radioactive calcium demonstrated that AMP or β-GP were more effective in promoting calcium deposition by isolated MVs than ATP. The application of this nonradioactive technique, which is highly sensitive and simple, would offer a useful alternative approach to the routinely used radiometric biomineralization assay which employs radioactive 45Ca.

References

  1. Anderson HC. Molecular biology of matrix vesicles. Clin Orthop Relat Res 1995; 314:266–280.

    PubMed  Google Scholar 

  2. Anderson HC, Garimella R, Tague SE. The role of matrix vesicles in growth plate development and biomineralization. Frontiers in Bioscience 2005; 10:822–837.

    Article  PubMed  CAS  Google Scholar 

  3. Ali SY, Sajdera SW, Anderson HC. Isolation and characterization of calcifying matrix vesicles from epiphyseal cartilage. Proc Natl Acad Sci USA 1970; 67:1513–1520.

    Article  PubMed  CAS  Google Scholar 

  4. Anderson HC, Stechschulte DJ Jr., Collins DE, Jacobs DH, Morris DC, Hsu HHT, Redford PA, Zeiger S. Matrix vesicle biogenesis in vitro by rachitic and normal rat chondrocytes. American Journal of Pathology 1990; 31:391–398.

    Google Scholar 

  5. Dhanyamraju R, Sipe JB, Anderson HC. Chondrogenic and osteogenic differentiation of primary cultures of rat growth plate chondrocytes. J Bone Min Res 2000; 15(Suppl 1):S381.

    Google Scholar 

  6. Dhanyamraju R, Sipe JB, Anderson HC. In vitro differentiation and matrix vesicle biogenesis in primary cultures of rat growth plate chondrocytes. In: Shapiro IM, Anderson HC, and Boyan BD editors. Growth Plate 2001, The Netherlands: IOS Press, Inc; 2002. p.127–138.

    Google Scholar 

  7. Garimella R, Bi X, Camacho N, Sipe J, Anderson HC. Primary culture of rat growth plate chondrocytes: an in vitro model of growth plate histotype, matrix vesicle biogenesis and mineralization. Bone 2004; 36:961–970.

    Article  CAS  Google Scholar 

  8. Fedde KN. Human osteosarcoma cells spontaneously release matrix-vesicle-like structures with the capacity to mineralize. Bone & Min 1992; 17:145–151.

    Article  CAS  Google Scholar 

  9. Glaser JH, Conrad HE. Formation of matrix vesicles by cultured chick embryo chondrocytes. J Biol Chem 1981; 256:2607–2611.

    Google Scholar 

  10. Kirsch T, Nah HD, Shapiro IM, Pacifici M. Regulated production of mineralization competent matrix vesicles in hypertrophic chondrocytes. J Cell Biol 1997; 137:1149–1160.

    Article  PubMed  CAS  Google Scholar 

  11. Wuthier RE, Chin JE, Hale JE, Register TC, Hale LV, Ishikawa Y. Isolation and characterization of calcium accumulating matrix vesicles from chondrocytes of chicken epiphyseal growth plate cartilage in primary culture. J Biol Chem 1985; 260:15972–15979.

    PubMed  CAS  Google Scholar 

  12. Sarkar BC, Chauhan UP. A new method for determining micro quantities of calcium in biological materials. Anal Biochem 1967; 20:155–166.

    Article  PubMed  CAS  Google Scholar 

  13. Jono S, Nishizawa Y, Shioi A, Morii H. 1,25-Dihydroxyvitamin D3 increases in vitro vascular calcification by modulating secretion of endogenous parathyroid hormone-related peptide. Circulation 1998; 98:1302–1306.

    PubMed  CAS  Google Scholar 

  14. ter Brugge PJ, Wolke JG, Jansen JA. Effect of calcium phosphate coating composition and crystallinity on the response of osteogenic cells in vitro. Clin Oral Implants Res 2003; 4:472–480.

    Article  Google Scholar 

  15. Whitfield JF, Morley P, Ross V, Preston E, Soska M, Barbier JR, Isaacs RJ, Maclean S, Ohannessian-Barry L, Willick GE. The hypotensive actions of osteogenic and nonosteogenic parathyroid hormone fragments. Calcif Tissue Int 1997; 60:302–308.

    Article  PubMed  CAS  Google Scholar 

  16. Ganta DR, McCarthy MB, Gronowicz GA. Ascorbic Acid Alters Collagen Integrins in Bone Culture. Endocrinology 1997; 138:3606–3612.

    Article  PubMed  CAS  Google Scholar 

  17. Wang W, Kirsch T. Retinoic acid stimulates annexinmediated growth plate chondrocyte mineralization. J Cell Biol 2002; 157:1061–1069.

    Article  PubMed  CAS  Google Scholar 

  18. Wu LN, Genge BR, Dunkelberger DG, LeGeros RZ, Concannon B, Wuthier RE. Physicochemical characterization of the nucleational core of matrix vesicles. J Biol Chem 1997; 272:4404–4411.

    Article  PubMed  CAS  Google Scholar 

  19. Baginski ES, Marie SS, Clark WL, Zak B. Direct microdetermination of serum calcium. Clin Chim Acta 1973; 46:49–54.

    Article  PubMed  CAS  Google Scholar 

  20. McCollum EV, Simmonds N, Becker JE, Shipley PG. Studies on experimental rickets. XXI. An experimental demonstration of the existence of a vitamin which promotes calcium deposition. J Biol Chem 1922; 53:293–312.

    CAS  Google Scholar 

  21. Hsu HH, Anderson HC. A simple and defined method to study calcification by isolated matrix vesicles. Effect of ATP and vesicle phosphatase. Biochim Biophys Acta 1977; 500:162–172.

    PubMed  CAS  Google Scholar 

  22. Bellows CG, Aubin JE, Heersch JNM. Initiation and progression of mineralization of bone nodules formed in vitro: the role of alkaline phosphatase and organic phosphate. Bone & Min 1991; 14:27–40.

    Article  CAS  Google Scholar 

  23. Boskey AL, Guidon P, Doty SB, Stiner D, Leboy P, Binderman I. The mechanism of beta-glycerophosphate action in mineralizing chick limb-bud mesenchymal cell cultures. J Bone Miner Res 1996; 11:1694–1702.

    Article  PubMed  CAS  Google Scholar 

  24. Chung CH, Golub EE, Forbes E, Tokuoka T, Shapiro IM. Mechanism of action of β-glycerophosphate on bone cell mineralization. Calcif Tissue Int 1992; 51:305–311.

    Article  PubMed  CAS  Google Scholar 

  25. Robison R. The possible significance of hexaphosphoric acid esters in ossification. Biochem J 1923; 17:286–293.

    PubMed  CAS  Google Scholar 

  26. Sakamoto S, Sakamoto M, Goldberg L, Colarusso L, Gotah Y. Mineralization induced by beta-glycerophosphate in cultures leads to a marked increase in collagenase synthesis by mouse osteogenic MCT3 E1 cells under subsequent stimulation with heparin. Biochem Biophys Res Commun 1989; 162:773–780.

    Article  PubMed  CAS  Google Scholar 

  27. Ikehara Y, Mansho K, Takahashi K, Kato K. Purification and characterization of alkaline phosphatase from plasma membranes of rat ascites hepatoma. J Biochem (Tokyo) 1978;83:1471–1483.

    CAS  Google Scholar 

  28. Matsumoto H, Golub EE, Shapiro IM. Is superoxide required for matrix vesicle formation? In: Ali SY editors. Cell mediated calcification and matrix vesicles. The Netherlands: Elsevier Science Publishers; 1986. p. 241–245.

    Google Scholar 

  29. Murphree S, Hsu HH, Anderson HC. In vitro formation of crystalline apatite by matrix vesicles isolated from rachitic rat epiphyseal cartilage. Calcif Tissue Int 1982; 34(Suppl 2):S62–68.

    PubMed  Google Scholar 

  30. Derfus B, Kranendonk S, Camacho N, Mandel N, Kushnaryov V, Lynch K, Ryan L. Human osteoarthritic cartilage matrix vesicles generate both calcium pyrophosphate dihydrate and apatite in vitro. Calcif Tissue Int 1998; 63:258–262.

    Article  PubMed  CAS  Google Scholar 

  31. Hsu HH, Camacho NP, Anderson HC. Further characterization of ATP-initiated calcification by matrix vesicles isolated from rachitic rat cartilage. Membrane perturbation by detergents and deposition of calcium pyrophosphate by rachitic matrix vesicles. Biochim Biophys Acta 1999; 1416:320–332.

    Article  PubMed  CAS  Google Scholar 

  32. Caswell AM, Ali SY, Graham R, Russell G. Nucleoside triphosphate pyrophosphatase in skeletal tissues. In: Ali SY editors. Cell mediated calcification and matrix vesicles. The Netherlands: Elsevier Science Publishers; 1986. p.101–106.

    Google Scholar 

  33. Fleisch H, Bisaz S. Mechanism of calcification: inhibitory role of pyrophosphate. Nature 1962; 195:911.

    Article  PubMed  CAS  Google Scholar 

  34. Termine JD, Kleinman HK, Whitson SW, Conn KM, McGarvey ML, Martin GR. Osteonectin, a bone-specific protein linking mineral to collagen. Cell 1981; 26:99–105.

    Article  PubMed  CAS  Google Scholar 

  35. Hessle L, Johnson KA, Anderson HC, Narisawa S, Sali A, Goding JW, Terkeltaub R, Millan JL. Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proc Natl Acad Sci USA 2002; 99:9445–9449.

    Article  PubMed  CAS  Google Scholar 

  36. Anderson HC, Sipe JB, Hessle L, Dhanyamraju R, Atti E, Camacho NP, Millan JL. Impaired calcification around matrix vesicles of growth plate and bone in alkaline phosphatase-deficient mice. Am J Pathol 2004; 164:841–847.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Clarke Anderson M.D..

Additional information

Published: December 16, 2004.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Garimella, R., Sipe, J.B. & Anderson, H.C. A simple and non-radioactive technique to study the effect of monophosphoesters on matrix vesicle-mediated calcification. Biol. Proced. Online 6, 263–267 (2004). https://doi.org/10.1251/bpo97

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1251/bpo97

Indexing terms

  • Cartilage
  • Growth Plate
  • Bone and Bones
  • Calcification, Physiologic