Skip to main content
  • Published:

A novel method to analyze leukocyte rolling behavior in vivo

Abstract

Leukocyte endothelial cell interaction is a fundamentally important process in many disease states. Current methods to analyze such interactions include the parallel-plate flow chamber and intravital microscopy. Here, we present an improvement of the traditional intravital microscopy that allows leukocyte-endothelial cell interaction to be studied from the time the leukocyte makes its initial contact with the endothelium until it adheres to or detaches from the endothelium. The leukocyte is tracked throughout the venular tree with the aid of a motorized stage and the rolling and adhesive behavior is measured off-line. Because this method can involve human error, methods to automate the tracking procedure have been developed. This novel tracking method allows for a more detailed examination of leukocyte-endothelial cell interactions.

Abbreviations

ICAM-1:

Intercellular Adhesion Molecule-1

LFA-1:

Lymphocyte Function-Associated Antigen-1

Mac-1:

Macrophage-1

TNF-α:

Tumor Necrosis Factor-α

References

  1. Butcher EC. Leukocyte-endothelial cell recognition: three (or more) steps to specificity and diversity. Cell 1991; 67(6):1033–1036.

    Article  PubMed  CAS  Google Scholar 

  2. Jung U, Norman KE, Scharffetter-Kochanek K, Beaudet AL, Ley K. Transit time of leukocytes rolling through venules controls cytokine-induced inflammatory cell recruitment in vivo. J Clin Invest 1998; 102(8):1526–1533.

    Article  PubMed  CAS  Google Scholar 

  3. Ley K, Allietta M, Bullard DC, Morgan S. Importance of E-selectin for firm leukocyte adhesion in vivo. Circ Res 1998; 83(3):287–294.

    PubMed  CAS  Google Scholar 

  4. Milstone DS, Fukumura D, Padgett RC, O’Donnell PE, Davis VM, Benavidez OJ et al. Mice lacking E-selectin show normal numbers of rolling leukocytes but reduced leukocyte stable arrest on cytokine-activated microvascular endothelium. Microcirculation 1998; 5(2–3):153–171.

    Article  PubMed  CAS  Google Scholar 

  5. Kunkel EJ, Dunne JL, Ley K. Leukocyte arrest during cytokine-dependent inflammation in vivo. J Immunol 2000; 164(6):3301–3308.

    PubMed  CAS  Google Scholar 

  6. Forlow SB, White EJ, Barlow SC, Feldman SH, Lu H, Bagby GJ et al. Severe inflammatory defect and reduced viability in CD18 and E-selectin double-mutant mice. J Clin Invest 2000; 106(12):1457–1466.

    Article  PubMed  CAS  Google Scholar 

  7. Stein JV, Cheng G, Stockton BM, Fors BP, Butcher EC, von Andrian UH. L-selectin-mediated leukocyte adhesion in vivo: microvillous distribution determines tethering efficiency, but not rolling velocity. J Exp Med 1999; 189(1):37–50.

    Article  PubMed  CAS  Google Scholar 

  8. Xu H, Manivannan A, Goatman KA, Jiang HR, Liversidge J, Sharp PF et al. Reduction in shear stress, activation of the endothelium, and leukocyte priming are all required for leukocyte passage across the blood-retina barrier. J Leukoc Biol 2004; 75(2):224–232.

    Article  PubMed  CAS  Google Scholar 

  9. Sikora L, Johansson AC, Rao SP, Hughes GK, Broide DH, Sriramarao P. A murine model to study leukocyte rolling and intravascular trafficking in lung microvessels. Am J Pathol 2003; 162(6):2019–2028.

    PubMed  Google Scholar 

  10. Grayson MH, Hotchkiss RS, Karl IE, Holtzman MJ, Chaplin DD. Intravital microscopy comparing T lymphocyte trafficking to the spleen and the mesenteric lymph node. Am J Physiol Heart Circ Physiol 2003; 284(6):H2213-H2226.

    PubMed  CAS  Google Scholar 

  11. Kunkel EJ, Ley K. Distinct phenotype of E-selectin-deficient mice. E-selectin is required for slow leukocyte rolling in vivo. Circ Res 1996; 79(6):1196–1204.

    PubMed  CAS  Google Scholar 

  12. Jung U, Ley K. Mice lacking two or all three selectins demonstrate overlapping and distinct functions for each selectin. J Immunol 1999; 162(11):6755–6762.

    PubMed  CAS  Google Scholar 

  13. Campbell JJ, Hedrick J, Zlotnik A, Siani MA, Thompson DA, Butcher EC. Chemokines and the arrest of lymphocytes rolling under flow conditions. Science 1998; 279(5349):381–384.

    Article  PubMed  CAS  Google Scholar 

  14. Rainger GE, Fisher AC, Nash GB. Endothelial-borne platelet-activating factor and interleukin-8 rapidly immobilize rolling neutrophils. Am J Physiol 1997; 272(1 Pt 2):H114-H122.

    PubMed  CAS  Google Scholar 

  15. Gerszten RE, Garcia-Zepeda EA, Lim YC, Yoshida M, Ding HA, Gimbrone MA, Jr. et al. MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nature 1999; 398(6729):718–723.

    Article  PubMed  CAS  Google Scholar 

  16. Dunne JL, Collins RG, Beaudet AL, Ballantyne CM, Ley K. Mac-1, but Not LFA-1, Uses Intercellular Adhesion Molecule-1 to Mediate Slow Leukocyte Rolling in TNF-alpha-Induced Inflammation. J Immunol 2003; 171(11):6105–6111.

    PubMed  CAS  Google Scholar 

  17. Dunne JL, Ballantyne CM, Beaudet AL, Ley K. Control of leukocyte rolling velocity in TNF-alpha-induced inflammation by LFA-1 and Mac-1. Blood 2002; 99(1):336–341.

    Article  PubMed  CAS  Google Scholar 

  18. Simon SI, Hu Y, Vestweber D, Smith CW. Neutrophil tethering on E-selectin activates beta 2 integrin binding to ICAM-1 through a mitogen-activated protein kinase signal transduction pathway. J Immunol 2000; 164(8):4348–4358.

    PubMed  CAS  Google Scholar 

  19. Forrester JV, Lackie JM. Adhesion of neutrophil leucocytes under conditions of flow. J Cell Sci 1984; 70:93–110.

    PubMed  CAS  Google Scholar 

  20. Ley K, Bullard DC, Arbones ML, Bosse R, Vestweber D, Tedder TF et al. Sequential contribution of L- and P-selectin to leukocyte rolling in vivo. J Exp Med 1995; 181(2):669–675.

    Article  PubMed  CAS  Google Scholar 

  21. Ding ZM, Babensee JE, Simon SI, Lu H, Perrard JL, Bullard DC et al. Relative contribution of LFA-1 and Mac-1 to neutrophil adhesion and migration. J Immunol 1999; 163(9):5029–5038.

    PubMed  CAS  Google Scholar 

  22. Lu H, Smith CW, Perrard J, Bullard D, Tang L, Shappell SB et al. LFA-1 is sufficient in mediating neutrophil emigration in Mac-1-deficient mice. J Clin Invest 1997; 99(6):1340–1350.

    Article  PubMed  CAS  Google Scholar 

  23. Collins RG, Richer SE, Robker RL, Smith CW, Beaudet AL. ICAM-1 null mice differ from previous ICAM-1 mutants: Is your model affected? Keystone Symposia. 2003. Ref Type: Abstract.

  24. Baez S. An open cremaster muscle preparation for the study of blood vessels by in vivo microscopy. Microvasc Res 1973; 5(3):384–394.

    Article  PubMed  CAS  Google Scholar 

  25. Tang J, Acton ST. Vessel boundary tracking for intravital microscopy via multiscale gradient vector flow snakes. IEEE Trans Biomed Eng 2004; 51(2):316–324.

    Article  PubMed  Google Scholar 

  26. Goobic AP, Tang J, Acton ST. Image stabilization and registration for tracking cells in the microvasculature. IEEE Trans Biomed Eng. In press.

  27. Ray N, Acton ST, Ley K. Tracking leukocytes in vivo with shape and size constrained active contours. IEEE Trans Med Imaging 2002; 21(10):1222–1235.

    Article  PubMed  Google Scholar 

  28. Acton ST, Wethmar K, Ley K. Automatic tracking of rolling leukocytes in vivo. Microvasc Res 2002; 63(1):139–148.

    Article  PubMed  Google Scholar 

  29. Norman KE. An effective and economical solution for digitizing and analyzing video recordings of the microcirculation. Microcirculation 2001; 8(4):243–249.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Ley.

Additional information

Published: August 27, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunne, J.L., Goobic, A.P., Acton, S.T. et al. A novel method to analyze leukocyte rolling behavior in vivo . Biol. Proced. Online 6, 173–179 (2004). https://doi.org/10.1251/bpo87

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1251/bpo87

Indexing terms