Skip to main content

Organotypic cocultures as skin equivalents: A complex and sophisticated in vitro system

Abstract

To assess the role of genes required for skin organogenesis, tissue regeneration and homeostasis, we have established in vitro skin equivalents composed of primary cells or cell lines, respectively. In these organotypic cocultures keratinocytes generate a normal epidermis irrespective of the species and tissue origin of fibroblasts. The combination of cells derived from mouse and human tissues facilitates the identification of the origin of compounds involved in epidermal tissue reconstitution and thus the precise analysis of growth regulatory mechanisms.

Abbreviations

DMEM:

Dulbecco’s modified Eagle’s medium

EGF:

epidermal growth factor

FCS:

fetal calf serum

HDF:

human dermal fibroblasts

MEF:

mouse embryonic fibroblasts

NEK:

normal epidermal keratinocytes

TGF-α:

transforming growth factor alpha

References

  1. Fusenig NE. Epithelial-mesenchymal interactions regulate keratinocyte growth and differentiation in vitro. In I Leigh, B Watt, F Lane (eds.) The Keratinocyte Handbook. Cambridge University Press; 1994, pp 71–94.

  2. Garlick JA, Taichman LB. Fate of human keratinocytes during reepithelialization in an organotypic culture model. Lab Invest 1994; 70:916–924.

    PubMed  CAS  Google Scholar 

  3. Bell E, Ehrlich HP, Buttler DJ, Nakatsuji T. Living tissue formed in vivo and accepted as skin-equivalent tissue of full thickness. Science 1981; 211:1052–1054.

    Article  PubMed  CAS  Google Scholar 

  4. Pruniéras M, Régnier M, Fougère S, Woodley D. Keratinocytes synthesize basal-lamina proteins in culture. J Invest Dermatol 1983; 81:74–81.

    Article  Google Scholar 

  5. Fusenig NE, Breitkreutz D, Dzarlieva RI, Boukamp P, Bohnert A, Tilgen W. Growth and differentiation of transformed keratinocytes from mouse and human skin in vitro and in vivo. J Invest Dermatol 1983; 81:168–175.

    Article  Google Scholar 

  6. Fusenig NE. Cell interaction and epithelial differentiation. In R.I. Freshney (ed.). Culture of epithelial cells. New York: Wiley-Liss Inc; 1992, pp 25–57.

    Google Scholar 

  7. Coulomb B, Dubertret L, Merrill C, Touraine R, Bell E. The collagen lattice: A model for studying epidermalization in vitro. Br J Dermatol 1984; 114:91–101.

    Article  Google Scholar 

  8. Smola H, Thiekötter G, Fusenig NE. Mutual induction of growth factor gene expression by epidermal-dermal cell interaction. J Cell Biol 1993; 122: 417–429.

    Article  PubMed  CAS  Google Scholar 

  9. Stark HJ, Baur M, Breitkreutz D, Mirancea N, Fusenig NE. Organotypic keratinocyte cocultures in defined medium with regular epidermal morphogenesis and differentiation. J Invest Dermatol 1999; 112:681–691.

    Article  PubMed  CAS  Google Scholar 

  10. Maas-Szabowski N, Szabowski A, Stark HJ, Andrecht S, Kolbus A, Schorpp-Kistner M, Angel P, Fusenig NE. Organotypic cocultures with genetically modified mouse fibroblasts as a tool to dissect molecular mechanisms regulating keratinocyte growth and differentiation. J Invest Dermatol 2001; 116:816–820.

    Article  PubMed  CAS  Google Scholar 

  11. Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 1988; 106(3):761–771.

    Article  PubMed  CAS  Google Scholar 

  12. Breitkreutz D, Stark HJ, Mirancea N, Tomakidi P, Steinbauer H, Fusenig NE. Integrin and basement membrane normalization in mouse grafts of human keratinocytes — implications for epithelial homeostasis. Differentiation 1997; 61:195–209.

    Article  PubMed  CAS  Google Scholar 

  13. Breitkreutz D, Schoop VM, Mirancea N, Baur M, Stark HJ, Fusenig NE. Epidermal differentiation and basement membrane formation by HaCaT cells in surface transplants. Eur J Cell Biol 1998; 75:273–286.

    PubMed  CAS  Google Scholar 

  14. Maas-Szabowski N, Stärker A, Fusenig NE. Epidermal tissue regeneration and stromal interaction in HaCaT cells is initiated by TGF-α. J Cell Sci 2003; 116:2937–2948.

    Article  PubMed  CAS  Google Scholar 

  15. Todaro GJ, Green H. High frequency of SV40 transformation of mouse cell line 3T3. Virology 1996; 4:756–759.

    Google Scholar 

  16. Schreiber M, Kolbus A, Piu F, Szabowski A, Mohle-Steinlein U, Tian J, Karin M, Angel P, Wagner EF. Control of cell cycle progression by c-Jun is p53 dependent. Genes Dev 1999; 13:607–619.

    Article  PubMed  CAS  Google Scholar 

  17. Kolbus A, Herr I, Schreiber M, Debatin KM, Wagner EF, Angel P. c-Jun-dependent CD95-L expression is a ratelimiting step in the induction of apoptosis by alkylating agents. Mol Cell Bio 2000; 20:575–582.

    Article  CAS  Google Scholar 

  18. Parenteau NL, Nolte CM, Bilbo P, Rosenberg K, Wilkins LM, Johnson EW, Watson S, Mason VS, Bell E. Epidermis generated in vitro: practical considerations and applications. J Cell Biochem 1991; 45:245–251.

    Article  PubMed  CAS  Google Scholar 

  19. Contard P, Bartel RL, Jacobs L, Perlish JS, MacDonald ED, Handler L, Cone D, Fleischmajer R. Culturing keratinocytes and fibroblasts in a three-dimensional mesh results in epidermal differentiation and formation of a basal laminaanchoring zone. J Invest Dermatol 1993; 100:35–39.

    Article  PubMed  CAS  Google Scholar 

  20. Maas-Szabowski N, Stark HJ, Fusenig NE. Keratinocyte growth regulation in defined organotypic cultures through IL-1-induced KGF expression in resting fibroblasts. J Invest Dermatol 2000; 114:1075–1084.

    Article  PubMed  CAS  Google Scholar 

  21. Stark HJ, Maas-Szabowski N, Smola H, Breitkreutz D, Mirancea N, Fusenig NE. Organotypic keratinocytefibroblast cocultures: in vitro skin equivalents to study the molecular mechanisms of cutaneous regeneration. In: Cultured human keratinocytes and tissue engeneered skin substitutes. Horch, Munster, Achauer (eds.); Thieme Verlag, Stuttgart 2001; pp 161–170

    Google Scholar 

  22. Turksen K, Choi Y, Fuchs E. Transforming growth factor alpha induces collagen degradation and cell migration in differentiating human epidermal raft cultures. Cell Regul 1991; 2:613–625.

    PubMed  CAS  Google Scholar 

  23. Kaur P, Carter WG. Integrin expression and differentiation in transformed human epidermal cells is regulated by fibroblasts. J Cell Sci 1992: 103:755–763.

    PubMed  CAS  Google Scholar 

  24. Choi Y, Fuchs E. TGF-β and retinoic acid: regulators of growth and modifiers of differentiation in human epidermal cells. Cell Regulation 1994; 4:791–809.

    Google Scholar 

  25. Szabowski A, Maas-Szabowski N, Andrecht S, Kolbus A, Schorpp-Kistner M, Fusenig NE, Angel P. c-Jun and JunB antagonistically control cytokine-regulated mesenchymal-epidermal interaction in skin. Cell 2000; 103:745–755.

    Article  PubMed  CAS  Google Scholar 

  26. Boukamp P, Popp S, Altmeyer S, Hulsen A, Fasching C, Cremer T, Fusenig NE. Sustained nontumorigenic phenotype correlates with a largely stable chromosome content during long-term culture of the human keratinocyte line HaCaT. Genes Chromosomes Cancer 1997; 19(4):201–214.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Maas-Szabowski.

Additional information

Published: April 12, 2004

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stark, HJ., Szabowski, A., Fusenig, N.E. et al. Organotypic cocultures as skin equivalents: A complex and sophisticated in vitro system. Biol. Proced. Online 6, 55–60 (2004). https://doi.org/10.1251/bpo72

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1251/bpo72

Indexing terms

  • Cocultures
  • Keratinocytes
  • Tissue engineering