Skip to main content

Shotgun phage display — Selection for bacterial receptins or other exported proteins

Abstract

Shotgun phage display cloning involves construction of libraries from randomly fragmented bacterial chromosomal DNA, cloned genes, or eukaryotic cDNAs, into a phagemid vector. The library obtained consists of phages expressing polypeptides corresponding to all genes encoded by the organism, or overlapping peptides derived from the cloned gene. From such a library, polypeptides with affinity for another molecule can be isolated by affinity selection, panning. The technique can be used to identify bacterial receptins and identification of their minimal binding domain, and but also to identify epitopes recognised by antibodies. In addition, after modification of the phagemid vector, the technique has also been used to identify bacterial extracytoplasmic proteins.

References

  1. 1.

    Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface.Science 1985; 228:1315–1317.

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Russel M, Linderoth NA, Sali A. Filamentous phage assembly: variation on a protein export theme.Gene 1997; 192:23–32.

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Smith GP, Petrenko VA. Phage display.Chem Rev 1997; 97:931–410.

    Article  Google Scholar 

  4. 4.

    Jacobsson K, Frykberg L. Cloning of ligand-binding domains of bacterial receptors by phage display.BioTechniques 1995; 18:878–885.

    PubMed  CAS  Google Scholar 

  5. 5.

    Jacobsson K, Frykberg L. Phage display shot-gun cloning of ligand-binding domains of prokaryotic receptors approaches 100% correct clones.BioTechniques 1996; 20:1070–1081.

    PubMed  CAS  Google Scholar 

  6. 6.

    Kronvall G, Jönsson K. Receptins: a novel term for an expanding spectrum of natural and engineered microbial proteins with binding properties for mammalian proteins.J Mo Recognit 1999; 12:38–44.

    Article  CAS  Google Scholar 

  7. 7.

    Kaida S, Miyata T, Yoshizawa Y, Kawabata S, Morita T, Igarashi H, Iwanaga S. Nucleotide sequence of the staphylocoagulase gene: its unique COOH-terminal 8 tandem repeats.J Biochem 1987; 102:1177–1186.

    PubMed  CAS  Google Scholar 

  8. 8.

    Bodén MK, Flock J-I. Cloning and characterisation of a gene for a 19 kDa fibrinogen-binding protein fromStaphylococcus aureus.Mol Microbiol 1994; 12:599–606.

    PubMed  Article  Google Scholar 

  9. 9.

    McDevitt D, Nanavaty T, House-Pompeo K, Bell E, Turner N, McIntire L, Foster T, Höök M. Characterization of the interaction between theStaphylococcus aureus clumping factor (ClfA) and fibrinogen.Eur J Biochem 1997; 247:416–424.

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Ni Eidhin D, Perkins S, Francois P, Vaudaux P, Hook M, Foster TJ. Clumping factor B (ClfB), a new surfacelocated fibrinogen-binding adhesin ofStaphylococcus aureus.Mol Microbiol 1998; 30:245–257.

    Article  CAS  Google Scholar 

  11. 11.

    Uhlén M, Guss B, Nilsson B, Gatenbeck S, Philipson L, Lindberg M. Complete sequence of the staphylococcal gene encoding protein A, a gene evolved through multiple duplications.J Biol Chem 1984; 29:1695–1702.

    Google Scholar 

  12. 12.

    Zhang L, Jacobsson K, Vasi J, Lindberg M, Frykberg L. A second IgG-binding protein inStaphylococcus aureus.Microbiology 1998; 144:985–991.

    PubMed  CAS  Article  Google Scholar 

  13. 13.

    Signäs C, Raucci G, Jönsson K, Lindgren P-E, Anantharamaiah GM, Höök M, Lindberg M. Nucleotide sequence for a gene for a fibronectin-binding protein fromStaphylococcus aureus: Use of this peptide sequence in the synthesis of biologically active peptides.Proc Natl Acad Sci USA 1989; 86:699–703.

    PubMed  Article  Google Scholar 

  14. 14.

    Jönsson K, Signäs C, Müller H-P, Lindberg M. Two different genes encode fibronectin binding proteins inStaphylococcus aureus. The complete nucleotide sequence and characterization of the second gene.Eur J Biochem 1991; 202:1041–1048.

    PubMed  Article  Google Scholar 

  15. 15.

    Tung H, Guss B, Hellman U, Persson L, Rubin K, Ryden C. A bone sialoprotein-binding protein fromStaphylococcus aureus: a member of the staphylococcal Sdr family.Biochem J 2000; 345:611–619.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Patti JM, Jonsson H, Guss B, Switalski LM, Wiberg K, Lindberg M, Höök M. Molecular characterization and expression of a gene encoding aStaphylococcus aureus collagen adhesin.J Biol Chem 1992; 267:4766–4772.

    PubMed  CAS  Google Scholar 

  17. 17.

    Jönsson K, McDevitt D, McGavin MH, Patti JM, Hook M.Staphylococcus aureus expresses a major histocompatibility complex class II analog.J Biol Chem 1995; 37:21456–21460.

    Google Scholar 

  18. 18.

    Hussain M, Beckar K, von Eiff C, Schrenzel J, Peters G, Herrmann M. Identification and characterization of a novel 38.5 -kilodalton cell surface protein ofStaphylococcus aureus with extended-spectrum binding activity for extracellular matrix and plasma proteins.J Bacteriol 2001; 183:6778–6786.

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Sambrook J, Russel DW. Molecular cloning, a laboratory manual. 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York; 2001.

    Google Scholar 

  20. 20.

    Parmley SF, Smith GP. Antibody-selectable filamentous fd phage vectors: affinity purification of target genes.Gene 1988; 73:305–318.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Bjerketorp J, Nilsson M, Ljungh Å, Flock J-I, Jacobsson K, Frykberg L. A novel von Willebrand factor binding protein expressed byStaphylococcus aureus.Microbiology 2002; 148:2037–2044.

    PubMed  CAS  Google Scholar 

  22. 22.

    Nilsson M, Frykberg L, Flock J-I, Pei L, Lindberg M, Guss B. A fibrinogen binding protein ofStaphylococcus epidermidis.Infect Immun 1998; 66:2666–2673.

    PubMed  CAS  Google Scholar 

  23. 23.

    Jacobsson K, Jonsson H, Lindmark H, Guss B, Lindberg M, Frykberg L. Shot-gun phage display mapping of two streptococcal cell-surface proteins.Microbiol Res 1997; 152:121–128.

    PubMed  CAS  Google Scholar 

  24. 24.

    Jacobsson K, Frykberg L. Gene VIII-based, phage-display vectors for selection against complex mixtures of ligands.BioTechniques 1998; 24:294–301.

    PubMed  CAS  Google Scholar 

  25. 25.

    Clarke SR, Harris LG, Richards RG, Foster SJ. Analysis of Ebh, a 1.1-megadalton cell wall-associated fibronectinbinding protein ofStaphylococcus aureus.Infect Immun 2002; 70:6680–6687.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Rosander A, Bjerketorp J, Frykberg L, Jacobsson K. Phage display as a novel screening method to identify extracellular proteins.J Microbiol Methods 2002; 51:43–55.

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Rosander A, Frykberg L, Ausmees N, Müller P. Identification of extracytoplasmic proteins inBradyrhizobium japonicum using phage display. Submitted.

  28. 28.

    Carcamo J, Ravera MW, Brissette R, Dedova O, Beasley JR, Alam-Moghe A, Wan C, Blume A, Mandecki W. Unexpected frameshifts from gene to expressed protein in a phage-displayed peptide library.Proc Natl Acad Sci USA 1998; 95:11146–11151.

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Fehren J, du Plessis DH. Cross-reactive epitope mimics in a fragmented-genome phage display library derived from the rickettsiaCowdria ruminantium.Immunotechnology 1999; 4:175–184.

    Article  Google Scholar 

  30. 30.

    Crameri R, Suter M. Display of biologically active proteins on the surface of filamentous phage: a cDNA cloning system for selection of functional gene products linked to the genetic information responsible for their production.Gene 1993; 137:69–75.

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Palzkill T, Huang W, Weinstock GM. Mapping proteinligand interactions using whole genome phage display libraries.Gene 1998; 1:79–83.

    Article  Google Scholar 

  32. 32.

    Jespers S, Messens JH, De Keyser A, Eeckhout D, Van Den Brande I, Gansemans YG, Lauwereys MJ, Vlasuk GP, Stanssens PE. Surface expression and ligand-based selection of cDNAs fused to filamentous phage gene VI.Bio/Technology 1995; 13:378–382.

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Heilmann C, Herrman M, Kehrel BE, Peters G. Platletbinding domains in 2 fibrinogen-binding proteins ofStaphylococcus aureus identified by phage display.J Infect Dis 2002; 186:32–39.

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Williams RJ, Henderson B, Nair SP.Staphylococcus aureus fibronectin binding proteins A and B possess a second fibronectin binding region that may have biological relevance to bone tissue.Calcif Tissue Inf 2002; 70:416–421.

    Article  CAS  Google Scholar 

  35. 35.

    Matthews LJ, Davis R, Smith GP. Immunogenically fit subunit vaccine components via epitope discovery from natural peptide libraries.J Immunol 2002; 169:837–846.

    PubMed  CAS  Google Scholar 

  36. 36.

    Ausmees N, Jacobsson K, Lindberg M. A unipolarly located, cell-surface-associated agglutinin, RapA, belongs to a family of Rhizobium-adhering proteins (Rap) inRhizobium leguminosarum bv.trifolii.Microbiology 2001; 147:549–559.

    PubMed  CAS  Google Scholar 

  37. 37.

    Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K, editors. Current Protocols in Molecular Biology. New York: John Wileys & Sons, Inc; 1989.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Karin Jacobsson.

Additional information

Published: May 1, 2003

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jacobsson, K., Rosander, A., Bjerketorp, J. et al. Shotgun phage display — Selection for bacterial receptins or other exported proteins. Biol. Proced. Online 5, 123 (2003). https://doi.org/10.1251/bpo54

Download citation

Indexing terms

  • Peptide Library
  • Staphylococcus aureus