Skip to main content

Methods for the measurement of a bacterial enzyme activity in cell lysates and extracts

Abstract

The kinetic characteristics and regulation of aspartate carbamoyltransferase activity were studied in lysates and cell extracts of Helicobacter pylori by three different methods. Nuclear magnetic resonance spectroscopy, radioactive tracer analysis, and spectrophotometry were employed in conjunction to identify the properties of the enzyme activity and to validate the results obtained with each assay. NMR spectroscopy was the most direct method to provide proof of ACTase activity; radioactive tracer analysis was the most sensitive technique and a microtitre-based colorimetric assay was the most cost-and time-efficient for large scale analyses. Freeze-thawing was adopted as the preferred method for cell lysis in studying enzyme activity in situ. This study showed the benefits of employing several different complementary methods to investigate bacterial enzyme activity.

References

  1. 1.

    Stryer, L. 1988. Biochemistry (3rd Ed). W.H. Freeman & Co: New York.

    Google Scholar 

  2. 2.

    Jost, P.C., and Griffith O.H. 1982. Lipid-protein interactions. Vol 1. John Wiley & Sons: New York.

    Google Scholar 

  3. 3.

    Coakley, W., Brown, R.C., and James, C.J. 1973. The inactivation of enzymes by ultrasonic cavitation at 20 kHz. Arch. Biochim. Biophys. 159, 722–729.

    Article  CAS  Google Scholar 

  4. 4.

    Burns, B.P., Hazell S.L., and Mendz, G.L. 1997. In situ properties of aspartate carbamoyltransferase activity in Helicobacter pylori. Arch. Biochem. Biophys. 347, 119–125.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    IARC. 1994. Schistosomes, liver fluke and Helicobacter pylori. Abst. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, vol. 61, pp. 177–240. Lyon: International Agency for Research on Cancer, World Health Organisation.

    Google Scholar 

  6. 6.

    Lee, A., Fox, J., and Hazell, S. 1993. Pathogenicity of Helicobacter pylori: a perspective. Infect. Immun. 61, 1601–1610.

    PubMed  CAS  Google Scholar 

  7. 7.

    Gerhart, J. C., and Pardee, A. B. 1962. The enzymology of control by feedback inhibition. J. Biol. Chem. 237, 891–896.

    PubMed  CAS  Google Scholar 

  8. 8.

    Mori, M., Ishida, H., and Tatibana, M. 1975. Aggregation and catalytic properties of the multienzyme complex catalyzing the initial steps of pyrimidine biosynthesis in rat liver. Biochemistry 14, 2622–2630.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Else, A. J., and Hervé, G. 1990. A microtitre plate assay for aspartate transcarbamylase. Anal. Biochem. 186, 219–221.

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Prescott, L. M., and Jones, M. E. 1969. Modified methods for the determination of carbamoyl aspartate. Anal. Biochem. 32, 408–419.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Allen, C. M., and Jones, M. E. 1964. Decomposition of carbamoyl phosphate in aqueous solutions. Biochemistry 3, 1238–1247.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Lopez, P., and Burgos, J. 1995. Lipoxygenase inactivation by manothermosonication: effects of sonication physical parameters, pH, KCl, sugars, glycerol, and enzyme concentration. J. Agric. Food Chem. 43, 620–625.

    Article  CAS  Google Scholar 

  14. 14.

    Furth, A.J. 1975. Purification and properties of a constitutive β-lactamase from Pseudomonas aeruginosa strain dalgleish. Bioch. Biophys. Acta. 377, 431–443.

    CAS  Google Scholar 

  15. 15.

    Diffley, P. and Jayawardena, A.N. 1982. Comparitive analysis of procedures used to isolate variant antigen from Trypanosoma brucei rhodesien. J. Parasitol. 68, 532–537.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Mendz, G. L., Jimenez, B. M., Hazell, S. L., Gero, A. M., and O’Sullivan, W. J. 1994. De novo synthesis of pyrimidine nucleotides by Helicobacter pylori. J. App. Bacteriol. 77, 1–8.

    CAS  Google Scholar 

  17. 17.

    Mendz, G.L., Hazell, S.L. and Burns, B.P. 1994. Evidence for the Entner-Duodoroff Pathway in Helicobacter pylori. Arch. Biochem. Biophys. 312, 349–356.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Burns, B.P., Hazell, S.L. and Mendz, G.L. 1995. Acetyl Coenzyme A carboxylase Activity in Helicobacter pylori and the requirement of increased carbon dioxide for growth. Microbiology 141, 3113–3118.

    PubMed  CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Brendan P. Burns.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Burns, B.P., Mendz, G.L. & Hazell, S.L. Methods for the measurement of a bacterial enzyme activity in cell lysates and extracts. Biol Proced Online 1, 17 (1998). https://doi.org/10.1251/bpo5

Download citation

Keywords

  • Nuclear Magnetic Resonance
  • Antipyrine
  • Nuclear Magnetic Resonance Spectroscopy
  • Biological Procedure
  • Carbamoyl Phosphate