Skip to main content

Application of a colorimetric assay to identify putative ribofuranosylaminobenzene 5′-phosphate synthase genes expressed with activity inEscherichia coli

Abstract

Tetrahydromethanopterin (H4MPT) is a tetrahydrofolate analog originally discovered in methanogenic archaea, but later found in other archaea and bacteria. The extent to which H4MPT occurs among living organisms is unknown. The key enzyme which distinguishes the biosynthetic pathways of H4MPT and tetrahydrofolate is ribofuranosylaminobenzene 5′-phosphate synthase (RFAP synthase). Given the importance of RFAP synthase in H4MPT biosynthesis, the identification of putative RFAP synthase genes and measurement of RFAP synthase activity would provide an indication of the presence of H4MPT in untested microorganisms. Investigation of putative archaeal RFAP synthase genes has been hampered by the tendency of the resulting proteins to form inactive inclusion bodies inEscherichia coli. The current work describes a colorimetric assay for measuring RFAP synthase activity, and two modified procedures for expressing recombinant RFAP synthase genes to produce soluble, active enzyme. By lowering the incubation temperature during expression, RFAP synthase fromArchaeoglobus fulgidus was produced inE. coli and purified to homogeneity. The production of active RFAP synthase fromMethanothermobacter thermautotrophicus was achieved by coexpression of the geneMTH0830 with a molecular chaperone. This is the first direct biochemical identification of a methanogen gene that codes for an active RFAP synthase.

References

  1. 1.

    DiMarco AA, Bobik TA, Wolfe RS. Unusual coenzymes of methanogenesis.Annu Rev Biochem 1990; 59:355–394.

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Thauer RK, Hedderich R, Fischer R. Reactions and enzymes involved in methanogenesis from CO2 and H2. In: Ferry JG, editor.Methanogenesis. New York and London: Chapman Hall; 1993; p. 209–237.

    Google Scholar 

  3. 3.

    Maden BEH. Tetrahydrofolate and tetrahydromethanopterin compared: functionally distinct carriers in C1 metabolism.Biochem J 2000; 350:609–629.

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Van Beelen P, Labro JF, Keltjens JT, Geerts WM, Vogels GD, Laarhoven WM, Guijt W, Haasnoot CAG. Derivatives of methanopterin, a coenzyme involved in methanogenesis.Eur J Biochem 1984; 139:359–365.

    PubMed  Article  Google Scholar 

  5. 5.

    Möller-Zinkhan D, Börner G, Thauer RK. Function of methanofuran, tetrahydromethanopterin, and coenzyme F420 inArchaeoglobus fulgidus.Arch Microbiol 1989; 152:362–368.

    Article  Google Scholar 

  6. 6.

    Zhou D, White RH. 5-(p-Aminophenyl)-1,2,3,4-tetrahydroxypentane, a structural component of the modified folate inSulfolobus solfataricus.J Bacteriol 1992; 174:4576–4582.

    PubMed  CAS  Google Scholar 

  7. 7.

    White RH. Structures of the modified folates in the thermophilic archaebacteriumPyrococcus furiosus.Biochemistry 1993; 32:745–753.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Leigh JA. Levels of water-soluble vitamins in methanogenic and non-methanogenic bacteria.Appl Environ Microbiol 1983; 45:800–803.

    PubMed  CAS  Google Scholar 

  9. 9.

    Chistoserdova L., Vorholt JA, Thauer RK, Lidstrom ME. C1 transfer enzymes and coenzymes linking methylotrophic bacteria and methanogenic archaea.Science 1998; 281:99–102.

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Vorholt JA, Chistoserdova L, Stolyar SM, Thauer RK, Lidstrom ME. Distribution of tetrahydromethanopterindependent enzymes in methylotrophic bacteria and phylogeny of methenyl tetrahydromethanopterin cyclohydrolases.J Bacteriol 1999; 181: 5750–5757.

    PubMed  CAS  Google Scholar 

  11. 11.

    Xu H, Aurora R, Rose GD, White RH. Identifying two ancient enzymes in Archaea using predicted secondary structure alignment.Nat Struct Biol 1999; 6:750–754.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Scott JW, Rasche ME. Purification, overproduction, and partial characterization of beta-RFAP synthase, a key enzyme in the pathway of methanopterin biosynthesis.J Bacteriol 2002; 184:4442–4448.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Graham DE, Xu H, White RH. A member of a new class of GTP cyclohydrolases produces formylaminopyrimidine nucleotide monophosphates.Biochemistry 2002; 41:15074–15084.

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    White RH. Biosynthesis of methanopterin.Biochemistry 1996; 35:3447–3456.

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Rasche ME, White RH. Mechanism for the enzymatic formation of 4-(beta-D-ribofuranosyl) aminobenzene 5′-phosphate during the biosynthesis of methanopterin.Biochemistry 1998; 37:11343–11351.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Sambrook J, Russell DW. Molecular cloning: a laboratory manual. 3rd ed. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press; 2001.

    Google Scholar 

  17. 17.

    Nishihara K, Kanemori M, Yanagi H, Yura T. Overexpression of trigger factor prevents aggregation of recombinant proteins inEscherichia coli.Appl Environ Microbiol 2000; 66:884–889.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Garfin DE. One-dimensional gel electrophoresis.Meth Enzymol 1990; 182:425–441.

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Bradford, MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal Biochem 1976; 72:248–254.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Good NE, Winget GD, Winter W, Connolly TN, Izawa S, Singh MM. Hydrogen ion buffers for biological research.Biochemistry 1966; 5:467–477.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Sako Y, Nomura N, Uchida A, Ishida Y, Morii H, Koga Y, Hoaki T, Maruyama T.Aeropyrum pernix gen. nov., sp. nov., a novel aerobic hyperthermophilic archaeon growing at temperatures up to 100°C.Intl J Syst Bacteriol 1996; 46:1070–1077.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Madeline E. Rasche.

Additional information

Florida Agricultural Experiment Station Journal Series no. R-09353

Published: March 4, 2003

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bechard, M.E., Chhatwal, S., Garcia, R.E. et al. Application of a colorimetric assay to identify putative ribofuranosylaminobenzene 5′-phosphate synthase genes expressed with activity inEscherichia coli . Biol. Proced. Online 5, 69–77 (2003). https://doi.org/10.1251/bpo48

Download citation

Indexing terms

  • archaea
  • tetrahydrofolates