Skip to main content

Progressive rearrangement of telomeric sequences added to both the ITR ends of the yeast linear pGKL plasmid

Abstract

Relocation into the nucleus of the yeast cytoplasmic linear plasmids was studied using a monitor plasmid pCLU1. InSaccharomyces cerevisiae, the nuclearly-relocated pCLU1 replicated in a linear form (termed pTLU-type plasmid) which carried the host telomeric repeats TG1–3 of 300–350 bp at both ends. The telomere sequences mainly consisted of a major motif TGTGTGGGTGTGG which was complementary to part of the RNA template of yeast telomerase and were directly added to the very end of the pCLU1-terminal element ITR (inverted terminal repeat), suggesting that the ITR end played a role as a substrate of telomerase. The telomere sequences varied among isolated pTLU-type plasmids, but the TG1–3 organization was symmetrically identical on both ends of any one plasmid. During cell growth under non-selective condition, the telomeric repeat sequences were progressively rearranged on one side, but not on the opposite side of pTLU plasmid ends. This indicates that the mode of telomeric DNA replication or repair differed between both ends. Clonal analysis showed that the intense rearrangement of telomeric DNA was closely associated with extreme instability of pTLU plasmids.

References

  1. 1.

    Fukuhara H. Linear DNA plasmids of yeasts.FEBS Microbiol Lett 1995; 131:1–9.

    Article  CAS  Google Scholar 

  2. 2.

    Gunge N. Linear DNA killer plasmids from the yeastKluyveromyces.Yeast 1986; 2:153–162.

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Gunge N. Plasmid DNA and the killer phenomenon inKluyveromyces. In Kueck U (ed) Mycota II. Genetics and biochemistry. Springer-Verlag. Berlin and Heidelberg, 1995, pp. 189–209.

    Google Scholar 

  4. 4.

    Meinhardt F, Schaffrath R. Extranuclear Inheritance: cytoplasmic linear double-stranded DNA killer elements of the dairy yeastKluyveromyces lactis. In Progress in Botany, Vol 62, Eds. Esser K, Luettge U, Kadereit J, Beyschlag W, Springer-Verlag, Berlin, Heidelberg, New York, 2001, pp 51–70.

    Google Scholar 

  5. 5.

    Salas M, Freire R, Soengas MS, Esteban JA, Mendez J, Bravo A, Serrano M, Blasco MA, Lazaro JM, Blanco L, Guitierrez C, Hermoso JM. Protein-nucleic acid interactions in bacteriophage φ29 DNA replication. FEMSMicrobiol Rev 1995; 17:73–82.

    PubMed  CAS  Google Scholar 

  6. 6.

    Stark MJR, Boyd A, Mileham A, Romanos MA. The plasmid-encoded killer system ofKluyveromyces lactis: a review.Yeast 1990; 6:1–29.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Romanos M, Boyd A. A transcriptional barrier to expression of cloned toxin genes of the linear plasmid k1 ofKluyveromyces lactis: evidence that native k1 has novel promoters.Nucleic Acids Res 1988; 16:7333–7350.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Sor F, Fukuhara H. Structure of a linear plasmid of the yeastKluyveromyces lactis: compact organization of the killer genome.Curr Genet 1985; 9:147–155.

    Article  CAS  Google Scholar 

  9. 9.

    Tiggermann M, Jeske S, Larsen M, Meinhardt F.Kluyveromyces lactis cytoplasmic plasmid pGKL2: heterologous expression of ORF3p and proof of guanylyltransferase and mRNA-triphosphqatase activities.Yeast 2001; 18:815–825.

    Article  Google Scholar 

  10. 10.

    Stam JC, Kwakman J, Meijer M, Stuije AR. Efficient isolation of the linear DNA killer plasmid ofKluyveromyces lactis: evidence for location and expression in the cytoplasm and characterization of their terminally bound proteins.Nucleic Acids Res 1986; 14:6871–6884.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Kaemper J, Meinhardt F, Gunge N, Esser K. Heterologous gene expression on the linear DNA killer plasmid fromKluyveromyces lactis.Curr Genet 1991; 19:109–118.

    Article  CAS  Google Scholar 

  12. 12.

    Tanguy-Rougeau C, Chen XJ, Wesolowski-Louvel M, Fukuhara H. Expression of a foreign KmR gene in linear killer DNA plasmids in yeast.Gene 1990; 91:43–50.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Fujimura H, Hishinuma F, Gunge N. Terminal segment ofKluyveromyces lactis linear DNA plasmid pGKL2 supports autonomous replication of hybrid plasmids inSaccharomyces cerevisiae.Curr Genet 1987; 12:99–104.

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Kaemper J, Meinhardt F, Gunge N, Esser K. In vivo construction of linear vectors based on killer plasmids fromKluyveromyces lactis: selection of a nuclear gene results in attachment of telomeres.Mol Cell Biol 1989; 9:3931–3937.

    CAS  Google Scholar 

  15. 15.

    Gunge N, Fukuda K, Takahashi S, Meinhardt M. Migration of the yeast linear DNA plasmid from the cytoplasm into the nucleus inSaccharomyces cerevisiae.Curr Genet 1995; 28:280–288.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Takata H, Fukuda K, Meinhardt F, Gunge N. Telomere sequences attached to nuclearly migrated yeast linear plasmid.Plasmid 2000; 43:137–143.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Takata H, Gunge N. Progressive alteration of telomeric sequences at one end of a yeast linear plasmid and its possible association with reduced plasmid stability.Mol Genet Genomics 2001; 266:686–694.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Gunge N, Takata H, Fukuda K, Iwao S, Miyakawa I. Relocation of a cytoplasmic yeast linear plasmid to the nucleus is associated with circularization via nonhomologous recombination involving inverted terminal repeats.Mol Gen Genet 2000; 263:846–853.

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors.Proc Natl Acad Sci USA 1977; 74:5463–5467.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Gunge N, Takahashi S, Fukuda K, Meinhardt F. UV hypersensitivity of yeast linear plasmids.Curr Genet 1994; 26:369–373.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Singer MS, Gottschling DE.TLC1: template RNA component ofSaccharomyces cerevisiae telomerase.Science 1994; 266:404–409.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Linger J, Hughes TR, Shevchenko A, Mann M, Lundblad, V, Cech TR. Reverse transcriptase motifs in the catalytic subunit of telomerase.Science 1997; 276:561–567.

    Article  Google Scholar 

  23. 23.

    McEachern MJ. Blackburn EH. A conserved sequence motif within the exceptionally diverse telomeric sequences of budding yeasts.Proc Natl Acad Sci USA 1994; 91:3453–3457.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Zakian VA.Saccharomyces telomeres: function, structure and replication. In Blackburn EH and Greider CW (eds) Telomerases. Cold Spring Harbor Lab Press, 1995, pp. 107–137.

  25. 25.

    Prescott J, Blackburn EH. Telomerase RNA mutations inSaccharomyces cerevisiae alter telomerase action and reveal nonprocessivity in vivo and in vitro.Genes á Develop 1997; 11:528–540.

    Article  CAS  Google Scholar 

  26. 26.

    Foerstemann K, Linger J. Molecular basis for telomere repeat divergence in budding yeast.Mol Cell Biol 2001; 21:7277–7286.

    Article  Google Scholar 

  27. 27.

    Sakaguchi K. Invertrons, a class of structurally and functionally related genetic elements that includes linear DNA plasmids, transposable elements, and genomes of adeno-type viruses.Microbiol Rev 1990; 54:66–74.

    PubMed  CAS  Google Scholar 

  28. 28.

    Gottschling DE, Aparicio OM, Billington BL, Zakian VA. Position effect atS. cerevisiae telomeres: reversible repression of POL II transcription.Cell 1990; 63:751–762.

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Longtine MS, Enomoto S, Finstad SL, Berman J. Telomere-mediated plasmid segregation inSaccharomyces cerevisiae involves gene products required for transcription repression at silencers and telomeres.Genetics 1993; 133:171–182.

    PubMed  CAS  Google Scholar 

  30. 30.

    Boek JD, LaCroute F, Fink GR. A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5′-fluoroorotic acid resistance.Mol Gen Genet 1984; 197:345–346.

    Article  Google Scholar 

  31. 31.

    Conrad NM, Wright JH, Wolf AJ, Zakian VA. RAP1 protein interacts with yeast telomeres in vivo: overproduction alters telomere structure and decreases chromosome stability.Cell 1990; 63:739–750.

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Kyrion G, Boakye KA, Lustig AJ. C-terminal truncation of RAP1 results in the deregulation of telomere size, stability, and function inSaccharomyces cerevisiae.Mol Cell Biol 1992; 12:5159–5173.

    PubMed  CAS  Google Scholar 

  33. 33.

    Lendvay TS, Morris DK, Sah J, Balasubramanian B, Lundblad V. Sequence mutations ofSaccharomyces cerevisiae with a defect in telomere replication identify three additionalEST genes.Genetics 1996; 144:1399–1412.

    PubMed  CAS  Google Scholar 

  34. 34.

    Ray A, Runge KW. The C terminus of the major yeast telomere binding protein Rap1 enhances telomere formation.Mol Cell Biol 1998; 18:1284–1295.

    PubMed  CAS  Google Scholar 

  35. 35.

    Virta-Pearlman V, Morris DK, Lundblad V. Est1 has the properties of a single-stranded telomere end-binding protein.Genes & Develop 1996; 10:3094–3104.

    Article  CAS  Google Scholar 

  36. 36.

    Louis EJ. The chromosome ends ofSaccharomyces cerevisiae.Yeast 1995; 11:1553–1573.

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Palladino F, Lacroche T, Gilson E, Axelrod A, Pillus L, Gasser M. Sir3 and Sir4 proteins are required for the positioning and integrity of yeast telomeres.Cell 1993; 75:543–555.

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Wotton D, Shore D. Novel Rap1p-interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length inSaccharomyces cerevisiae.Genes & Develop 1997; 11:748–760.

    Article  CAS  Google Scholar 

  39. 39.

    Gravel S, Larrivee M, Labrecque P, Wellinger RJ. Yeast ku as a regulator of chromosomal DNA end structure.Science 1998; 280:741–744.

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Laroche T, Martin SG, Gotta M, Gorham HC, Pryde FE, Louis EJ, Gasser SM. Mutation of yeast Ku genes disrupts the subnuclear organization of telomeres.Curr Biol 1998; 8:653–656.

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Nugent CI, Bosco G, Ross LO, Evans SK, Salinger AP, Moore JK, Haber JE, Lundblad V. Telomere maintenance is dependent on activities required for end repair of double-strand breaks.Curr Biol 1998; 8:657–660.

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Ritchie KB, Mallory JC, Petes TD. Interaction ofTLC1 (which encodes the RNA subunit of telomerase),TEL1, andMEC1 in regulating telomere length in the yeastSaccharomyces cerevisiae.Mol Cell Biol 1999; 19:6065–6075.

    PubMed  CAS  Google Scholar 

  43. 43.

    Greenwell PW, Kronmal SL, Porter SE, Gassenhuber J, Obermarie B, Petes TD.TEL1, a gene involved in controlling telomere length inS. cerevisiae, is homologous to the human ataxia telangiectasis gene.Cell 1995; 82:823–829.

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Runge KW, Zakian VA.TEL2, an essential gene required for telomere length regulation and telomere position effect inSaccharomyces cerevisiae.Mol Cell Biol 1996; 16:3094–3105.

    PubMed  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Norio Gunge.

Additional information

Published: February 17, 2003

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gunge, N., Takata, H., Matsuura, A. et al. Progressive rearrangement of telomeric sequences added to both the ITR ends of the yeast linear pGKL plasmid. Biol. Proced. Online 5, 29–42 (2003). https://doi.org/10.1251/bpo44

Download citation

Indexing terms

  • linear pGKL plasmid
  • cytoplasmic linear plasmid
  • telomere de novo addition
  • telomerase
  • Kluyveromyces lactis
  • Saccharomyces cerevisiae