Skip to main content

Isolation, growth and identification of colony-forming cells with erythroid, myeloid, dendritic cell and NK-cell potential from human fetal liver

Abstract

The study of hematopoietic stem cells (HSCs) and the process by which they differentiate into committed progenitors has been hampered by the lack of in vitro clonal assays that can support erythroid, myeloid and lymphoid differentiation. We describe a method for the isolation from human fetal liver of highly purified candidate HSCs and progenitors based on the phenotypes CD38CD34++ and CD38+CD34++, respectively. We also describe a method for the growth of colony-forming cells (CFCs) from these cell populations, under defined culture conditions, that supports the differentiation of erythroid, CD14/CD15+ myeloid, CD1a+ dendritic cell and CD56+ NK cell lineages. Flow cytometric analyses of individual colonies demonstrate that CFCs with erythroid, myeloid and lymphoid potential are distributed among both the CD38 and CD38+ populations of CD34++ progenitors.

References

  1. 1.

    Lobach DF, Haynes BF. Ontogeny of the human thymus during fetal development J. Clin. Immunol. 1987;7:81–97.

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Bárcena A, Galy AHM, Punnonen J, Muench MO, Schols D, Roncarolo MG, de Vries JE, Spits H. Lymphoid and myeloid differentiation of fetal liver CD34+ lineage- cells in human thymic organ culture J. Exp. Med. 1994;180:123–132.

    PubMed  Article  Google Scholar 

  3. 3.

    Crosbie OM, Reynolds M, McEntee G, Traynor O, Hegarty JE, O’Farrelly C. In vitro evidence for the presence of hematopoietic stem cells in the adult human liver Hepatology 1999;29:1193–1198.

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Humeau L, Namikawa R, Bardin F, Mannoni P, Roncarolo MG, Chabannon C. Ex vivo manipulations alter the reconstitution potential of mobilized human CD34+ peripheral blood progenitors Leukemia 1999;13:438–452.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Lemoli RM, Tafuri A, Fortuna A, Catani L, Rondelli D, Ratta M, Tura S. Biological characterization of CD34+ cells mobilized into peripheral blood Bone Marrow Transplant. 1998;22(5):S47-S50.

    PubMed  Google Scholar 

  6. 6.

    Palis J, Yoder MC. Yolk-sac hematopoiesis: The first blood cells of mouse and man Exp. Hematol. 2001;29:927–936.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Medvinsky AL, Dzierzak EA. Development of the definitive hematopoietic hierarchy in the mouse Dev. Comp. Immunol. 1998;22:289–301.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Charbord P, Tavian M, Humeau L, Peault B. Early ontogeny of the human marrow from long bones: an immunohistochemical study of hematopoiesis and its microenvironment Blood 1996;87:4109–4119.

    PubMed  CAS  Google Scholar 

  9. 9.

    Bradley TR, Metcalf D. The growth of mouse bone marrow cells in vitro Aust. J. Exp. Biol. Med. Sci. 1966;44:287–300.

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Ichikawa Y, Pluznik DH, Sachs L. In vitro control of the development of macrophage and granulocyte colonies Proc. Natl. Acad. Sci. USA 1966;56:488–495.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Iscove NN, Guilbert LJ, Weyman C. Complete replacement of serum in primary cultures of erythropoietin-dependent red cell precursors (CFU-E) by albumin, transferrin, iron, unsaturated fatty acid, lecithin and cholesterol Exp. Cell Res. 1980;126:121–126.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Valtieri M, Gabbianelli M, Pelosi E, Bassano E, Petti S, Russo G, Testa U, Peschle C. Erythropoietin alone induces burst formation by human embryonic but not adult BFU-E in unicellular serum-free culture Blood 1989;74:460–470.

    PubMed  CAS  Google Scholar 

  13. 13.

    Bradley TR, Hodgson GS. Detection of primitive macrophage progenitor cells in mouse bone marrow Blood 1979;54:1446–1450.

    PubMed  CAS  Google Scholar 

  14. 14.

    Nakahata T, Ogawa M. Identification in culture of a class of hemopoietic colony-forming units with extensive capability to self-renew and generate multipotential hemopoietic colonies Proc. Natl. Acad. Sci. USA 1982;79:3843–3847.

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    McNiece IK, Langley KE, Zsebo KM. The role of recombinant stem cell factor in early B cell development. Synergistic interaction with IL-7 J. Immunol. 1991;146:3785–3790.

    PubMed  CAS  Google Scholar 

  16. 16.

    Hirayama F, Shih JP, Awgulewitsch A, Warr GW, Clark SC, Ogawa M. Clonal proliferation of murine lymphohemopoietic progenitors in culture Proc. Natl. Acad. Sci. USA 1992;89:5907–5911.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Ashany D, Elkon KB, Migliaccio G, Migliaccio AR. Functional characterization of lymphoid cells generated in serum- deprived culture stimulated with stem cell factor and interleukin 7 from normal and autoimmune mice J. Cell. Physiol. 1995;164:562–570.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Mrozek E, Anderson P, Caligiuri MA. Role of interleukin-15 in the development of human CD56+ natural killer cells from CD34+ hematopoietic progenitor cells Blood 1996;87:2632–2640.

    PubMed  CAS  Google Scholar 

  19. 19.

    Ball TC, Hirayama F, Ogawa M. Lymphohematopoietic progenitors of normal mice Blood 1995;85:3086–3092.

    PubMed  CAS  Google Scholar 

  20. 20.

    Aiba Y, Ogawa M. Development of natural killer cells, B lymphocytes, macrophages, and mast cells from single hematopoietic progenitors in culture of murine fetal liver cells Blood 1997;90:3923–3930.

    PubMed  CAS  Google Scholar 

  21. 21.

    Sato T, Laver JH, Aiba Y, Ogawa M. NK cell colony formation from human fetal thymocytes Exp. Hematol. 1999;27:726–733.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Muench MO, Bárcena A. Broad distribution of colony-forming cells with erythroid, myeloid, dendritic cell and NK cell potential among CD34++ fetal liver cells J. Immunol. 2001;167:4902–4909.

    PubMed  CAS  Google Scholar 

  23. 23.

    Muench MO, Bárcena A, Ohkubo T, Harrison MR. Requirement of retinoids for the expression of CD38 on human hematopoietic progenitors in vitro Cytotherapy 1999;1:455–467.

    Article  Google Scholar 

  24. 24.

    Xiao M, Dooley DC. Cellular and molecular aspects of human CD34+ CD38 precursors: analysis of a primitive hematopoietic population Leuk. Lymph. 2000;38:489–497.

    CAS  Google Scholar 

  25. 25.

    Golfier F, Bárcena A, Cruz J, Harrison MR, Muench MO. Mid-trimester fetal livers are a rich source of CD34+/++ cells for transplantation Bone Marrow Transplant. 1999;24:451–461.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Muench MO, Namikawa R. Disparate regulation of human fetal erythropoiesis by the microenvironments of the liver and bone marrow Blood Cells Mol. Dis. 2001;27:377–390.

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Muench MO, Humeau L, Paek B, Ohkubo T, Lanier LL, Albanese CT, Bárcena A. Differential effects of interleukin-3, interleukin-7, interleukin 15, and granulocyte-macrophage colony-stimulating factor in the generation of natural killer and B cells from primitive human fetal liver progenitors Exp. Hematol. 2000;28:961–973.

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Ferlazzo G, Klein J, Paliard X, Wei WZ, Galy A. Dendritic cells generated from CD34+ progenitor cells with flt3 ligand, c-kit ligand, GM-CSF, IL-4, and TNFalpha are functional antigen- presenting cells resembling mature monocyte-derived dendritic cells J. Immunother. 2000;23:48–58.

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Curti A, Fogli M, Ratta M, Tura S, Lemoli RM. Stem cell factor and FLT3-ligand are strictly required to sustain the long-term expansion of primitive CD34+DR- dendritic cell precursors J. Immunol. 2001;166:848–854.

    PubMed  CAS  Google Scholar 

  30. 30.

    Bykovskaia SN, Buffo M, Zhang H, Bunker M, Levitt ML, Agha M, Marks S, Evans C, Ellis P, Shurin MR, Shogan J. The generation of human dendritic and NK cells from hemopoietic progenitors induced by interleukin-15 J. Leukoc. Biol. 1999;66:659–666.

    PubMed  CAS  Google Scholar 

  31. 31.

    Galy A, Travis M, Cen D, Chen B. Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset Immunity 1995;3:459–473.

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Muench MO, Roncarolo MG, Menon S, Xu Y, Kastelein R, Zurawski S, Hannum CH, Culpepper J, Lee F, Namikawa R. FLK-2/FLT-3 ligand (FL) regulates the growth of early myeloid progenitors isolated from human fetal liver Blood 1995;85:963–972.

    PubMed  CAS  Google Scholar 

  33. 33.

    33. Muench MO, Cupp J, Polakoff J, Roncarolo MG. Expression of CD33, CD38 and HLA-DR on CD34+ human fetal liver progenitors with a high proliferative potential Blood 1994;83:3170–3181.

    PubMed  CAS  Google Scholar 

  34. 34.

    34. Hogan CJ, Shpall EJ, Keller G. Differential long-term and multilineage engraftment potential from subfractions of human CD34+ cord blood cells transplanted into NOD/SCID mice Proc. Natl. Acad. Sci. USA 2002;99:413–418.

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    35. Zhou LJ, Tedder TF. CD14+ blood monocytes can differentiate into functionally mature CD83+ dendritic cells Proc. Natl. Acad. Sci. USA 1996;93:2588–2592.

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Spits H, Couwenberg F, Bakker AQ, Weijer K, Uittenbogaart CH. Id2 and Id3 inhibit development of CD34(+) stem cells into predendritic cell (pre-DC)2 but not into pre-DC1. Evidence for a lymphoid origin of pre-DC2 J. Exp. Med. 2000;192:1775–1784.

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    de Yebenes VG, Carrasco YR, Ramiro AR, Toribio ML. Identification of a myeloid intrathymic pathway of dendritic cell development marked by expression of the granulocyte macrophage-colony- stimulating factor receptor Blood 2002;99:2948–2956.

    PubMed  Article  Google Scholar 

  38. 38.

    Ogawa M. Stochastic model revisited Int. J. Hematol. 1999;69:2–5.

    PubMed  CAS  Google Scholar 

  39. 39.

    Hao QL, Zhu J, Price MA, Payne KJ, Barsky LW, Crooks GM. Identification of a novel, human multilymphoid progenitor in cord blood Blood 2001;97:3683–3690.

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Rice HE, Hedrick MH, Flake AW, Donegan E, Harrison MR. Bacterial and fungal contamination of human fetal liver collected transvaginally for hematopoietic stem cell transplantation Fetal Diagn. Ther. 1993;8:74–78.

    PubMed  CAS  Article  Google Scholar 

  41. 41.

    Hern WM. Correlation of fetal age and measurements between 10 and 26 weeks of gestation Obstet. Gynecol. 1984;63:26–32.

    PubMed  CAS  Google Scholar 

  42. 42.

    Mercer BM, Sklar S, Shariatmadar A, Gillieson MS, D’Alton ME. Fetal foot length as a predictor of gestational age Am. J. Obstet. Gynecol. 1987;156:350–355.

    PubMed  CAS  Google Scholar 

  43. 43.

    Merz E, Oberstein A, Wellek S. Age-related reference ranges for fetal foot length Ultraschall. Med. 2000;21:79–85.

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    44. Mychaliska GB, Muench MO, Rice HE, Leavitt AD, Cruz J, Harrison MR. The biology and ethics of banking fetal liver hematopoietic stem cells for in utero transplantation. J. Pediatr. Surg. 1998;33:394–399.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marcus O. Muench.

Additional information

Published: June 11, 2002.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Muench, M.O., Suskind, D.L. & Bárcena, A. Isolation, growth and identification of colony-forming cells with erythroid, myeloid, dendritic cell and NK-cell potential from human fetal liver. Biol Proced Online 4, 10–23 (2002). https://doi.org/10.1251/bpo29

Download citation

Indexing terms

  • fetal tissue
  • hematopoietic stem cells
  • cell differentiation
  • natural killer cells
  • dendritic cells