Skip to main content

A rapid microwell fluorescence immunoassay for cellular protein detection

Abstract

In this paper, we describe a simple, rapid, specific, sensitive, and reliable method, the FICP method (Fluorescence Immunoassay for Cellular Protein detection) which is readily applicable to the detection of proteins directly on cells cultured in 96-well plates. In order to illustrate this method, we report on the detection of two different proteins, the cell cycle proteins cyclin D1 and p21CIP1/WAF1, in untreated and 2-cyclopenten-1-one treated breast cancer cells. When the FICP method was compared with Western blot procedure, FICP was found to be superior for many characteristics. By using this method, we were able to quantify biological effects of a specific compound on protein levels in non-lysed cells and perform statistical analysis. Therefore, we believe this screening assay could be very useful for detecting poorly expressed proteins and for drug development.

References

  • Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR. New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 1990;82:1107–1112.

    Article  PubMed  CAS  Google Scholar 

  • Emili AQ, Cagney G. Large-scale functional analysis peptide or protein arrays. Nat Biotechnol 2000;18:393–397.

    Article  PubMed  CAS  Google Scholar 

  • Uetz P, Giot L, Cagney G. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 2000; 403:623–627.

    Article  PubMed  CAS  Google Scholar 

  • Hall DA, Zhu H, Zhu X, Royce T, Gerstein M, Snyder M. Regulation of gene expression by a metabolic enzyme. Science 2004; 306:482–484.

    Article  PubMed  CAS  Google Scholar 

  • Bertone P, Snyder M. Advances in functional protein microarray technology. FEBS J 2005; 272:5400–5411.

    Article  PubMed  CAS  Google Scholar 

  • Garbis S, Lubec G, Fountoulakis M. Limitations of current proteomics technologies. J Chromatogr A 2005; 1077:1–18.

    Article  PubMed  CAS  Google Scholar 

  • Tomizaki KY, Usui K, Mihara H. Protein-Detecting Microarrays: Current Accomplishments and Requirements. ChemBioChem 2005; 6:782–799.

    Article  PubMed  CAS  Google Scholar 

  • Starkuviene V, Pepperkok R, Erfle H. Transfected cell microarray: an efficient tool for high-throughput functional analysis. Expert Rev Proteomics 2007; 4:479–489.

    Article  PubMed  CAS  Google Scholar 

  • Ziauddin J, Sabatini DM. Microarrays of cells expressing defined cDNAs. Nature 2001; 411:107–110.

    Article  PubMed  CAS  Google Scholar 

  • Kallioniemi OP, Wagner U, Kononen J, Sauter G. Tissue microarray technology for high throughput molecular profiling of cancer. Hum Mol Genet 2001; 10:657–662.

    Article  PubMed  CAS  Google Scholar 

  • Bailey SN, Sabatini DM, Stockwell BR. Microarrays of small molecules embedded in biodegradable polymers for use in mammalian cell-based screens. Proc Natl Acad Sci USA 2004; 101:16144–16149.

    Article  PubMed  CAS  Google Scholar 

  • Wheeler DB, Carpenter AE, Sabatini DM. Cell microarrays and RNA interference chip away at gene function. Nat Gen 2005; 37:S25-S30.

    Article  CAS  Google Scholar 

  • Song XC, Fu G, Yang X, Jiang Z, Wang Y, Zhou WG. Protein expression profiling of breast cancer cells by Dissociable Antibody MicroArray (DAMA) staining. Mol Cell Proteomics 2008; 7:163–169.

    PubMed  CAS  Google Scholar 

  • Wu RZ, Bailey SN, Sabatini DM. Cell-biological applications of transfected-cell microarrays. TRENDS Cell Biol 2002; 12:485–488.

    Article  PubMed  CAS  Google Scholar 

  • Ali-Osman F. Culture of human normal brain and malignant brain tumors for cellular, molecular, and pharmacological studies. In: Jones GE, editor. Methods in Molecular Medicine: Human Cell Culture Protocols. Totowa, NJ: Humana Press; 1996. p. 63–80.

    Chapter  Google Scholar 

  • Straus DS, Glass CK. Cyclopentenone prostaglandins: new insights on biological activities and cellular targets. Medicinal Res Rev 2001; 21:185–210.

    Article  CAS  Google Scholar 

  • Gorospe M, Liu Y, Xu Q, Chrest FJ, Holbrook NJ. Inhibition of G1 cyclin-dependent kinase activity during growth arrest of human breast carcinoma cells by prostaglandin A2. Mol Cell Biol 1996; 16:762–770.

    PubMed  CAS  Google Scholar 

  • Bui T, Kuo C, Rotwein P, Straus DS. Prostaglandin A2 specifically represses insulin-like growth factor-I gene expression in C6 rat glioma cells. Endocrinol 1997; 138:985–993.

    Article  CAS  Google Scholar 

  • Hsiang CH, Straus DS. Cyclopentenone causes cell cycle arrest and represses cyclin D1 promoter activity in MCF-7 breast cancer cells. Oncogene 2002; 21:2212–2226.

    Article  PubMed  CAS  Google Scholar 

  • Kamagata C, Tsuji N, Moriai M, Kobayashi D, Watanabe N. 15-deoxy-Delta(12,14)-prostaglandin J2 inhibits G2-M phase progression in human breast cancer cells via the down-regulation of cyclin B1 and survivin expression. Breast Cancer Res Treat 2007; 102:263–2733.

    Article  PubMed  CAS  Google Scholar 

  • Lavigne C, Thierry AR. Specific subcellular localization of siRNAs delivered by lipoplex in MCF-7 breast cancer cells. Biochimie 2007; 89:1245–1251.

    Article  PubMed  CAS  Google Scholar 

  • Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immun Meth 1983; 65:55-63.

    Article  Google Scholar 

  • Campo PA, Das S, Hsiang CH, Bui T, Samuel CE, Straus DS. Translational regulation of cyclin D1 by 15-deoxy-Δ 12,14-prostaglandin J2. Cell Growth Differ 2002; 13:409–420.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carole Lavigne.

Rights and permissions

Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Lavigne, C., de Guignée, A. & Thierry, A.R. A rapid microwell fluorescence immunoassay for cellular protein detection. Biol. Proced. Online 10, 83–89 (2008). https://doi.org/10.1251/bpo146

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1251/bpo146

Indexing Terms