Skip to main content

Optimized two-dimensional thin layer chromatography to monitor the intracellular concentration of acetyl phosphate and other small phosphorylated molecules

Abstract

Acetyl phosphate (acetyl-P) serves critical roles in coenzyme A recycling and ATP synthesis. It is the intermediate of the Pta-AckA pathway that inter-converts acetyl-coenzyme A and acetate. Acetyl-P also can act as a global signal by donating its phosphoryl group to specific two-component response regulators. This ability derives from its capacity to store energy in the form of a high-energy phosphate bond. This bond, while critical to its function, also destabilizes acetyl-P in cell extracts. This lability has greatly complicated biochemical analysis, leading in part to widely varying acetyl-P measurements. We therefore developed an optimized protocol based on two-dimensional thin layer chromatography that includes metabolic labeling under aerated conditions and careful examination of the integrity of acetyl-P within extracts. This protocol results in greatly improved reproducibility, and thus permits precise measurements of the intracellular concentration of acetyl-P, as well as that of other small phosphorylated molecules.

Abbreviations

2D-TLC:

two-dimensional thin layer chromatography

acetyl-P:

acetyl phosphate

PTA:

phosphotransacetylase

PDHC:

pyruvate dehydrogenase complex

References

  1. Wolfe AJ. The acetate switch. Microbiol. Mol. Biol. Rev. 2005;69:12–50.

    Article  PubMed  CAS  Google Scholar 

  2. Fredericks CE, Shibata S, Aizawa S-I, Reimann SA and Wolfe AJ. Acetyl phosphate-sensitive regulation of flagellar biogenesis and capsular biosynthesis depends on the Res phosphorelay. Mol. Microbiol. 2006;61:734–747.

    Article  PubMed  CAS  Google Scholar 

  3. Wolfe AJ, Chang D-E, Walker JD, et al. Evidence that acetyl phosphate functions as a global signal during biofilm development. Mol. Microbiol. 2003;48:977–988.

    Article  PubMed  CAS  Google Scholar 

  4. Pruss BM, Besemann C, Denton A and Wolfe AJ. A complex transcription network controls the early stages of biofilm development by Escherichia coli. J. Bacteriol. 2006;188:3731–3739.

    Article  PubMed  CAS  Google Scholar 

  5. Mandin P, Fsihi H, Dussurget O, et al. VirR, a response regulator critical for Listeria monocytogenes virulence. Mol. Microbiol. 2005;57:1367–1380.

    Article  PubMed  CAS  Google Scholar 

  6. Chiang SL, Mekalanos JJ. Use of signature-tagged transposon mutagenesis to identify Vibrio cholerae genes critical for colonization. Mol. Microbiol. 1998;27:797–805.

    Article  PubMed  CAS  Google Scholar 

  7. Kim YR, Brinsmade SR, Yang Z, Escalante-Semerena J and Fierer J. Mutation of phosphotransacetylase but not isocitrate lyase reduces the virulence of Salmonella enterica serovar Typhimurium in mice. Infect. Immun. 2006;74:2498–2502.

    Article  PubMed  CAS  Google Scholar 

  8. Bang IS, Audia JP, Park YK and Foster JW. Autoinduction of the OmpR response regulator by acid shock and control of the Salmonella enterica acid tolerance response. Mol. Microbiol. 2002;44:1235–1250.

    Article  PubMed  CAS  Google Scholar 

  9. McCleary WR, Stock JB and Ninfa AJ. Is acetyl phosphate a global signal in Escherichia coli? J. Bacteriol. 1993;175:2793–2798.

    PubMed  CAS  Google Scholar 

  10. Wanner BL. Gene regulation by phosphate in enteric bacteria. J. Cell. Biochem. 1993;51:47–54.

    Article  PubMed  CAS  Google Scholar 

  11. Majdalani N, Gottesman S. The Res phosphorelay a complex signal transduction system. Anna Rev. Microbiol. 2005;59:379–405.

    Article  CAS  Google Scholar 

  12. Wang Q, Zhao Y, McClelland M and Harshey RM. The RcsCDB signaling system and swarming motility in Salmonella enterica serovar Typhimurium: dual regulation of flagellar and SPI-2 virulence genes. J. Bacteriol. 2007; 189:8447–57.

    Article  PubMed  CAS  Google Scholar 

  13. Pruss BM, Wolfe AJ. Regulation of acetyl phosphate synthesis and degradation, and the control of flagellar expression in Escherichia coli. Mol. Microbiol. 1994;12:973–984.

    Article  PubMed  CAS  Google Scholar 

  14. McCleary WR, Stock JB. Acetyl phosphate and the activation of two-component response regulators. J. Biol. Chem. 1994;269:31567–31572.

    PubMed  CAS  Google Scholar 

  15. Hunt AG. Micromethod for the measurement of acetyl phosphate and acetyl coenzyme A. Methods Enzymol. 1986;122:43–50.

    Article  PubMed  CAS  Google Scholar 

  16. Hong JS, Hunt AG, Masters PS and Lieberman MA. Requirements of acetyl phosphate for the binding protein-dependent transport systems in Escherichia coli. Proc. Natl. Acad. Sci. USA 1979;76:1213–1217.

    Article  PubMed  CAS  Google Scholar 

  17. Hong J-S, Hunt AG. The role of acetylphosphate in active transport.J. Supramol. Struct. 1980;4:77.

    Google Scholar 

  18. Klein AH, Shulla, A., Reimann, S. A., Keating, D. H., and Wolfe, A. J. The intracellular concentration of acetyl phosphate in Escherichia coli is sufficient for direct phosphorylation of two-component response regulators. J. Bacteriol. 2007;189:5574–5581.

    Article  PubMed  CAS  Google Scholar 

  19. Bochner BR, Ames BN. Complete analysis of cellular nucleotides by two-dimensional thin layer chromatography J. Biol. Chem. 1982;257:9759–9769.

    PubMed  CAS  Google Scholar 

  20. Bochner BR, Ames BN. Selective precipitation orthophosphate from mixtures containing labile phosphorylated metabolites. Anal. Biochem. 1982;122:100–107.

    Article  PubMed  CAS  Google Scholar 

  21. Kumari S, Beatty CM, Browning DF, et al. Regulation of acetyl coenzyme A synthetase in Escherichia coli. J. Bacteriol. 2000;182:4173–4179.

    Article  PubMed  CAS  Google Scholar 

  22. Kumari S, Tishel R, Eisenbach M and Wolfe AJ. Cloning, characterization, and functional expression of acs, the gene which encodes acetyl coenzyme A synthetase in Escherichia coli. J. Bacteriol. 1995;177:2878–2886.

    PubMed  CAS  Google Scholar 

  23. Neidhardt FC, Bloch PL and Smith DF. Culture medium for enterobacteria. /Bacteriol 1974;119:736–47.

    CAS  Google Scholar 

  24. Van Dyk TK, LaRossa RA. Involvement of ack-pta operon products in alpha-ketobutyrate metabolism by Salmonella typhimurium. Mol. Gen. Genet. 1987;207:435–40.

    Article  PubMed  Google Scholar 

  25. Bock A-K, Glasemacher J, Schmidt R and Schonheit P. Purification and characterization of two extremely thermostable enzymes, phosphate acetyltransferase and acetate kinase, from the hyperthermophilic eubacterium Thermotoga maritima. J. Bacteriol. 1999;181:1861–1867.

    PubMed  CAS  Google Scholar 

  26. Deutscher J, Francke C and Postma PW. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria Microbiol. Mol. Biol. Rev. 2006;70:939–1031.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan J. Wolfe.

Rights and permissions

Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Keating, D.H., Shulla, A., Klein, A.H. et al. Optimized two-dimensional thin layer chromatography to monitor the intracellular concentration of acetyl phosphate and other small phosphorylated molecules. Biol. Proced. Online 10, 36–46 (2008). https://doi.org/10.1251/bpo141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1251/bpo141

Indexing Terms