Skip to main content

Recent advances in freeze-fracture electron microscop: the replica immunolabeling technique

Abstract

Freeze-fracture electron microscopy is a technique for examining the ultrastructure of rapidly frozen biological samples by transmission electron microscopy. Of a range of approaches to freeze-fracture cytochemistry that have been developed and tried the most successful is the technique termed freeze-fracture replica immunogold labeling (FRIL). In this technique samples are frozen fractured and replicated with platinum-carbon as in standard freeze fracture and then carefully treated with sodium dodecylsulphate to remove all the biological material except a fine layer of molecules attached to the replica itself. Immunogold labeling of these molecules permits their distribution to be seen superimposed upon high resolution planar views of membrane structure. Examples of how this technique has contributed to our understanding of lipid droplet biogenesis and function are discussed.

References

  1. 1.

    Severs NJ. Freeze-fracture electron microscopy. Nature Protocols 2007;2:547–576.

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Severs NJ. Freeze-fracture cytochemistry: an explanatory survey of methods. In “Rapid Freezing, Freeze Fracture, and Deep Etching” (NJ Severs, DM Shotton eds.), 1995, pp. 173–208. Wiley-Liss, New York.

    Google Scholar 

  3. 3.

    Fujimoto K. Freeze-fracture replica electron microscopy combined with SDS digestion for cytochemical labeling of integral membrane proteins - Application to the immunogold labeling of intercellular junctional complexes. J Cell Sci 1995;108:3443–3449.

    PubMed  CAS  Google Scholar 

  4. 4.

    Fujimoto K. SDS-digested freeze-fracture replica labeling electron microscopy to study the two-dimensional distribution of integral membrane proteins and phospholipids in biomembrane: practical procedure, interpretation and application. Histochem Cell Biol 1997;107:87–96.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Pinto da Silva P, Kan FWK. Label-fracture: a method for high resolution labeling of cell surfaces. J Cell Biol 1984;99:1156–1161.

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Andersson Foreman C, Pinto da Silva P. Label-fracture of cell surfaces by replica staining. J Histochem Cytochem 1998;36:1413–1418.

    Google Scholar 

  7. 7.

    Pinto da Silva P. Visual thinking of biological membranes: from freeze-etching to label-fracture. In “Immunogold labeling methods in cell biology” (A Verkleij, JLN Leunissen eds.), 1989, pp. 179–197. CRC Press, Boca Raton.

    Google Scholar 

  8. 8.

    Pinto da Silva P, Andersson Forsman C, Fujimoto K. Fracture-flip: nanoanatomy and topochemistry of cell surfaces. In “Cells and tissues: a three-dimensional approach by modern techniques in microscopy” (P Motta ed.), 1989, pp. 49–56. Alan R. Liss, New York.

    Google Scholar 

  9. 9.

    Kan FWK, Pinto da Silva P. Label-fracture cytochemistry. In “Colloidal Gold. Principles, Methods and Applications“ (MA Hayat ed.), 1989, pp. 175–201. Academic Press, Orlando.

    Google Scholar 

  10. 10.

    Rash JE, Yasumura T, Hudson CS, Agre P, Nielsen S. Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord. Proc Natl Acad Sci USA 1998;95:11981–11986.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Rash JE, Yasumura T. Direct immunogold labeling of connexins and aquaporin-4 in freeze-fracture replicas of liver, brain and spinal cord: factors limiting quantitative analysis. Cell Tiss Res 1999;296:307–321.

    Article  CAS  Google Scholar 

  12. 12.

    Rash JE, Olson CO, Pouliot WA, Davidson KGV, Yasumura T, Furman CS, Royer S, Kamasawa N, Nagy JI, Dudek FE. Connexin36 vs Connexin32, “Miniature” neuronal gap junctions and limited electrotonic coupling in rodent suprachiasmatic nucleus. Neuroscience 2007;149:350–371.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Dunia I, Recouvreur M, Nicolas P, Kumar NM, Bloemendal H, Benedetti EL. Sodium dodecyl Sulphate-freeze-fracture immunolabeling of gap junctions. In “Methods in Molecular Biology: Connexin Methods and Protocols, Vol 154” (R Bruzzone, C Giaume eds.), 2001, pp. 33–55. Humana Press, Totowa.

    Google Scholar 

  14. 14.

    Kamasawa N, Furman CS, Davidson KG, Sampson JA, Magnie AR, Gebhardt BR, Kamasawa M, Yasumura T, Zumbrunnen JR, Pickard GE, Nagy JI, Rash JE. Abundance and ultrastructural diversity of neuronal gap junctions in the OFF and ON sublaminae of the inner plexiform layer of rat and mouse retina. Neuroscience 2006;142:1093–1117.

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Kamasawa N, Sik A, Morita M, Yasumura T, Davidson KG, Nagy JI, Rash JE. Connexin-47 and connexin-32 in gap junctions of oligodendrocyte somata, myelin sheaths, paranodal loops and Schmidt-Lanterman incisures: implications for ionic homeostasis and potassium siphoning. Neuroscience 2005;136:65–86.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Nagy JI, Dudek FE, Rash JE. Update on connexins and gap junctions in neurons and glia in the mammalian nervous system. Brain Res Rev 2004;47:191–215.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Rash JE, Davidson KG, Kamasawa N, Yasumura T, Kamasawa M, Zhang C, Michaels R, Restrepo D, Ottersen OP, Olson CO, Nagy JI. Ultrastructural localization of connexins (Cx36, Cx43, Cx45), glutamate receptors and aquaporin-4 in rodent olfactory mucosa, olfactory nerve and olfactory bulb. J Neurocytol 2005;34:307–341.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Rash JE, Johnson TJA, Dinchuk JE, and Levinson SR. Labeling intramembrane particles in freeze-fracture replicas. In “Freeze-fracture Studies of Membranes” (SW. Hui ed.), 1989, pp. 41–59. CRC Press, Boca Raton.

    Google Scholar 

  19. 19.

    Stevenson S, Rothery S, Cullen MJ, Severs NJ. Spatial relationship of C-terminal domains of dystrophin and β-dystroglycan in cardiac muscle support a direct molecular interaction at the plasma membrane interface. Circ Res 1998;82: 82–93.

    PubMed  CAS  Google Scholar 

  20. 20.

    Stevenson SA, Cullen MJ, Rothery S, Coppen SR, Severs NJ. High-resolution en-face visualization of the cardiomyocyte plasma membrane reveals distinctive distributions of spectrin and dystrophin. Eur J Cell Biol 2005;84:961–971.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Robenek H, Hofnagel O, Buers I, Robenek MJ, Troyer D, Severs NJ. Adipophilin-enriched domains in the ER membrane are sites of lipid droplet biogenesis. J Cell Sci 2006;119:4215–4224.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Robenek MJ, Schlattmann K, Zimmer KP, Plenz G, Troyer D, Robenek H. Cholesterol transporter caveolin-1 transits the lipid bilayer during intracellular cycling. FASEB J 2003;17:1940–1942.

    PubMed  CAS  Google Scholar 

  23. 23.

    Robenek MJ, Severs NJ, Schlattmann K, Plenz G, Zimmer KP, Troyer D, Robenek H. Lipids partition caveolin-1 from ER membranes into lipid droplets: updating the model of lipid droplet biogenesis. FASEB J 2004; 18:866–868.

    PubMed  CAS  Google Scholar 

  24. 24.

    Robenek H, Lorkowski S, Schnoor M, Troyer D. Spatial integration of TIP47 and adipophilin in macrophage lipid bodies. J Biol Chem 2005;280:5789–5794.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Robenek H, Robenek MJ, Buers I, Lorkowski S, Hofnagel O, Troyer D, Severs NJ. Lipid droplets gain PAT family proteins by interaction with specialized plasma membrane domains. J Biol Chem 2005;280:26330–26338.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Robenek H, Hofnagel O, Buers I, Lorkowski S, Schnoor M, Robenek MJ, Heid H, Troyer D, Severs NJ. Butyrophilin controls milk fat globule secretion. Proc Natl Acad Sci USA 2006;103:10385–10390.

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Branton D, Bullivant S, Gilula NB, Karnovsky MJ, Moor H, Muhlethaler K, Northcote DH, Packer L, Satir B, Satir P, Speth V, Staehelin LA, Steere RL, Weinstein RS. Freeze-etching nomenclature. Science 1975;190:54–56.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Horst Robenek.

Rights and permissions

Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Robenek, H., Severs, N.J. Recent advances in freeze-fracture electron microscop: the replica immunolabeling technique. Biol. Proced. Online 10, 9–19 (2008). https://doi.org/10.1251/bpo138

Download citation

Indexing terms

  • Freeze Fracturing
  • Microscopy, Immunoelectron
  • Immunoǵold Techniques