Skip to main content

Anin vitro method to study the effects of hematopoietic regulators during immune and blood cell development

Abstract

In adults, hematopoiesis occurs in bone marrow (BM) through a complex process with differentiation of hematopoietic stem cells (HSCs) to immune and blood cells. Human HSCs and their progenitors express CD34. Methods on hematopoietic regulation are presented to show the effects of the chemokine, stromal-derived growth factor (SDF)-1α and the neuropeptide, substance P (SP). SDF-1α production in BM stroma causes interactions with HSCs, thereby retaining the HSCs in regions close to the endosteum, at low oxygen. Small changes in SDF-1α levels stimulate HSC functions through direct and indirect mechanisms. The indirect method occurs by SP production, which stimulates CD34+ cells, supported by ligand-binding studies, long-term culture-initiating cell assays for HSC functions, and clonogenic assays for myeloid progenitors. These methods can be applied to study other hematopoietic regulators.

Abbreviations

BM:

Bone marrow

CLP:

common lymphoid progenitors

CMP:

common myeloid progenitors

HSCs:

hematopoietic stem cells

MSCs:

mesenchymal stem cells

NK-A:

neurokinin-A

NK1:

neurokinin-1

NK2:

neurokinin-2

SDF-1α:

Stromal cell-derived factor 1α

SP:

Substance P

References

  1. Zon LI. Developmental biology of hematopoiesis. Blood 1995;86:2876–2891.

    PubMed  CAS  Google Scholar 

  2. Weissman IL. Stem Cells: units of development, units of regeneration, and units of evolution. Cell 2000;100:157–168.

    Article  PubMed  CAS  Google Scholar 

  3. Moore KA, Ema H, Lemischka IR.In vitro maintenance of highly purified, transplantable hematopoietic stem cells. Blood 1997;89:4337–4347.

    PubMed  CAS  Google Scholar 

  4. Manz MG, Traver D, Miyamoto T, Weissman IL, Akashi K. Dendritic cell potentials of early lymphoid and myeloid progenitors. Blood 2001;97:3333–3341.

    Article  PubMed  CAS  Google Scholar 

  5. Morrison SJ, Shah NM, Anderson DJ. Regulatory mechanisms in stem cell biology. Cell 1997;88:287–298.

    Article  PubMed  CAS  Google Scholar 

  6. Rameshwar P, Oh HS, Yook C, Gascon P, Chang VT. Substance P-Fibronectin-Cytokine Interactions in Myeloproliferative Disorders with Bone Marrow Fibrosis. Acta Haematologica 2003;109:1–10.

    Article  PubMed  CAS  Google Scholar 

  7. Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES. The sympathetic nerve — an intergrative interface between two supersystems: the brain and the immune system. Pharmacol Rev 2000;52:595–638.

    PubMed  CAS  Google Scholar 

  8. Deans RJ, Moseley AB. Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol 2000;28:875–884.

    Article  PubMed  CAS  Google Scholar 

  9. Arai F, Ohneda O, Miyamoto T, Zhang XQ, Suda T. Mesenchymal stem cells in perichondrium express activated leukocyte cell adhesion molecule and participate in bone marrow formation. J Exp Med 2002;195:1549–1563.

    Article  PubMed  CAS  Google Scholar 

  10. Caplan AI, Bruder SP. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med 2001;7:259–264.

    Article  PubMed  CAS  Google Scholar 

  11. Kaushansky K, Karplus AP. Hematopoietic growth factors: Understanding functional diversity in structural terms. Blood 1993;82:3229–3240.

    PubMed  CAS  Google Scholar 

  12. Muller-Sieburg CE, Deryugina E. The stromal cells’ guide to the stem cell universe. Stem Cells 1995;13:477–486.

    Article  PubMed  CAS  Google Scholar 

  13. Claps CM, Corcoran KE, Cho KJ. Stromal derived growth factor-1alpha as a beacon for stem cell homing in development and injury. Curr Neurovasc Res 2005;2:319–329.

    Article  PubMed  CAS  Google Scholar 

  14. Lapidot T, Dar A, Kollet O. How do stem cells find their way home? Blood 2005;106: 1901–1910.

    Article  PubMed  CAS  Google Scholar 

  15. Kucia M, Reca R, Miekus K, Wanzeck J, Wojakowski W, Janowska-Wieczoreck A, Ratajczak J, Ratajczak MZ. Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: pivotal role of the SDF-1-CXCR4 axis. Stem Cells 2005;7: 879–894.

    Article  CAS  Google Scholar 

  16. Laurence AD. Location, movement and survival: the role of chemokines in haematopoiesis and malignancy. Br J Haematol 2006;132:255–267.

    Article  PubMed  CAS  Google Scholar 

  17. Arai A, Jin A, Yan W, Mizuchi D, Yamamoto K, Nanki T, Miura O. SDF-1 synergistically enhances IL-3-induced activation of the Raf-1/MEK/Erk signaling pathway through activation of Rac and its effector Pak kinases to promote hematopoiesis and chemotaxis. Cell Signaling 2005;17:497–506.

    Article  CAS  Google Scholar 

  18. Moharita AL, Taborga M, Corcoran KE, Bryan M, Patel SP, Rameshwar P. SDF-1a regulation in breast cancer cells contacting bone marrow stroma is critical for normal hematopoiesis. Blood 2006;108:3245–3252.

    Article  PubMed  CAS  Google Scholar 

  19. Corcoran KE, Patel N, Rameshwar P. Stromal Derived Growth Factor-1α: Another Mediator in Neural-Emerging Immune System through Tac1 Expression in Bone Marrow Stromal Cells. J Immunol 2007;178:2075–2082.

    PubMed  CAS  Google Scholar 

  20. Greco S, Corcoran KE, Cho KJ, Rameshwar P. Tachykinins in the emerging immune system: relevance to bone marrow homeostasis and maintenance of hematopoietic stem cells. Frontiers Biosci 2004;9:1782–1793.

    Article  CAS  Google Scholar 

  21. Rameshwar P, Gascon P. Hematopoietic Modulation by the Tachykinins. Acta Haematol 1997;98:59–64.

    Article  PubMed  CAS  Google Scholar 

  22. Kang HS, Trzaska K, Corcoran KE, Chang VT, Rameshwar P. Neurokinin receptors: relevance to the emerging immune system. Arch Immunol. Ther. Exp 2004;52:338–347.

    CAS  Google Scholar 

  23. Quartara L, Maggi CA. The tachykinin NK1 receptor: Part II. Distribution and pathophysiological roles. Neuropepides 1998;32:1–49.

    Article  CAS  Google Scholar 

  24. Gerard NP, Bao L, Ping HX, Gerard C. Molecular aspects of the tachykinin receptors. Regul Peptides 1993;43:21–35.

    Article  CAS  Google Scholar 

  25. Patacchini R, Maggi CA. Tachykinin receptors and receptor subtypes. Arch Int Pharmacaodyn 1995;329:161–184.

    CAS  Google Scholar 

  26. Maloof PB, Joshi DD, Qian J, Gascon P, Singh D, Rameshwar P. Induction of preprotachykinin-I and neurokinin-1 by adrenocorticotropin and prolactin. Implication for neuroendocrine- immune-hematopoietic axis. J Neuroimmunol 2001;112:188–196.

    Article  PubMed  CAS  Google Scholar 

  27. Joshi DD, Dang A, Yadav J, Qian J, Bandari PS, Chen K, Donnelly R, Castro T, Gascon P, Haider A, Rameshwar P. Negative feedback on the effects of stem cell factor on hematopoiesis is partly mediated through endopeptides activity on substance P: a combined functional and proteomic study. Blood 2001;98: 2697–2706.

    Article  PubMed  CAS  Google Scholar 

  28. Rameshwar P, Gascon P. Neural regulation of hematopoiesis by the tachykinins. Mol Biol Hematopoiesis 1996;5:463–470.

    Google Scholar 

  29. Rameshwar P, Gascon P. Induction of negative hematopoietic regulators by neurokinin-A in bone marrow stroma. Blood 1996;88:98–106.

    PubMed  CAS  Google Scholar 

  30. Gascon P, Qian J, Joshi DD, Teli T, Haider A, Rameshwar P. Effects of PPT-1 Peptides on hematopoietic homeostasis. A role for bone marrow endopeptidases. Ann NY Acad Sci 2000;917:416–423.

    Article  PubMed  CAS  Google Scholar 

  31. Rameshwar P, Poddar A, Gascon P. Hematopoietic regulation medicated by interactions among the neurokinins and cytokines. Leuk Lymphoma 1997;28:1–10.

    PubMed  CAS  Google Scholar 

  32. Rameshwar P, Gascon P. Substance P mediates the production of stem cell factor and interleukin-1 in bone marrow stroma. Blood 1995;88:98–106.

    Google Scholar 

  33. Rameshwar P, Ganea D, Gascon P.In vitro stimulatory effect of substance P on hematopoiesis. Blood 1993;81:391–398.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranela Rameshwar Ph.D..

Rights and permissions

Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Patel, N., Castillo, M. & Rameshwar, P. Anin vitro method to study the effects of hematopoietic regulators during immune and blood cell development. Biol. Proced. Online 9, 56–64 (2007). https://doi.org/10.1251/bpo133

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1251/bpo133

Indexing terms