Skip to main content

Role of a transbilayer pH gradient in the membrane fusion activity of the influenza virus hemagglutinin: Use of the R18 assay to monitor membrane merging

Abstract

It had been suggested that influenza virus-mediated membrane fusion might be dependent on a pH gradient across a target membrane. We have designed experiments in which this issue could be addressed. Two populations of liposomes were prepared, both simulating the plasma membrane of target cells, but with the pH of the internal aqueous medium buffered either at pH 7.4 (physiological cytosol pH) or at pH 5.0 (endosomal pH at which influenza virus displays maximal fusion activity). By monitoring fusion using the R18 assay, we found that the internal pH of the target liposomes did not influence membrane merging as mediated by the influenza virus hemagglutinin, thus demonstrating that a transmembrane pH gradient is not required in this fusion process.

Abbreviations

HA:

influenza virus hemagglutinin

FCCP:

carbonylcyanide-p-trifluoromethoxyphenyl hydrazone

LUV:

large unilamellar vesicles

PC:

phosphatidylcholine

PE:

phosphatidylethanolamine

R18:

octadecylrhodamine B chloride

References

  1. Hernandez, L. D., Hoffman, L. R., Wolfsberg, T. G. & White, J. 1996. Virus-Cell and Cell-Cell Fusion. Annu. Rev. Cell Dev. Biol. 12, 627–661.

    Article  PubMed  CAS  Google Scholar 

  2. Ramalho-Santos, J. & Lima, M. C. P. 1998. The Influenza Virus Hemagglutinin: A Model Protein in the Study of Membrane Fusion. Biochim. Biophys. Acta 1376, 147–154.

    PubMed  CAS  Google Scholar 

  3. Guinea, R. & Carrasco, L. 1994. Concanamycin A Blocks Influenza Virus Entry into Cells Under Acidic Conditions. FEBS Lett. 349, 327–330.

    Article  PubMed  CAS  Google Scholar 

  4. Guinea, R. & Carrasco, L. 1995. Requirement for Vacuolar Proton-ATPase Activity During Entry of Influenza Virus into Cells. J. Virol 69., 2306–2312.

    PubMed  CAS  Google Scholar 

  5. Carrasco, L. 1994. Entry of Animal Viruses and Macromolecules into Cells. FEBS Lett. 350, 151–154.

    Article  PubMed  CAS  Google Scholar 

  6. Helenius, A., Kielian, M., Wellsteed, J., Mellman, I. & Rudnick, G. 1985. Effects of Monovalent cations on Semliki Forest Virus Entry into BHK-21 Cells. J. Biol. Chem. 260, 5691–5697.

    PubMed  CAS  Google Scholar 

  7. Irurzun, A., Nieva, J. L. & Carrasco, L. 1997. Entry of Semliki Forest Virus into Cells: Effects of Concanamycin A and Nigericin on Viral Membrane Fusion and Infection. Virology 227, 488–492.

    Article  PubMed  CAS  Google Scholar 

  8. Hoekstra, D., de Boer, T., Klappe, K. & Wilschut, J. 1984. Fluorescence Method for Measuring the Kinetics of Fusion Between Biological Membranes. Biochemistry 23, 5675–5681.

    Article  PubMed  CAS  Google Scholar 

  9. Ramalho-Santos, J., Nir, S., Düzgünes, N., Carvalho, A. P. & Lima, M. C. P. 1993. A Common Mechanism for Influenza Virus Fusion Activity and Inactivation. Biochemistry 32, 2771–2779.

    Article  PubMed  CAS  Google Scholar 

  10. Ramalho-Santos, J., Lima, M. C. P. & Nir, S. 1996. Partial Fusion Activity of Influenza Virus Towards Liposomes and Erythrocyte Ghosts is Distinct from Viral Inactivation J. Biol. Chem. 271, 23902–23906.

    Article  PubMed  CAS  Google Scholar 

  11. Stegmann, T., Nir, S. & Wilschut, J. 1989. Membrane Fusion Activity of Influenza Virus. Effects of Gangliosides and Negatively Charged Phospholipids in Target Liposomes. Biochemistry 28, 1698–1704.

    Article  PubMed  CAS  Google Scholar 

  12. Szoka, F. Jr & Papahadjopoulos, D. 1980. Comparative Properties and Methods of Preparation of Lipid Vesicles (Liposomes). Ann. Rev. Biophys. Bioeng. 9, 467–508.

    Article  Google Scholar 

  13. Bron, R., Kendal, A. P., Klenk, H. D. & Wilschut, J. 1993. Role of the M2 Protein in Influenza Virus Membrane Fusion: Effects of Amantadine and Monensin on Fusion Kinetics. Virology 195, 808–811.

    Article  PubMed  CAS  Google Scholar 

  14. Wharton, S. A., Belshe, R. B., Skehel, J. J. & Hay, A. J. 1994. Role of Virion M2 Protein in Influenza Virus Uncoating: Specific Reduction in the Rate of Membrane Fusion Between Virus and Liposomes by Amantadine. J. Gen. Virol. 75, 945–948.

    Article  PubMed  CAS  Google Scholar 

  15. Stegmann, T., White, J. & Helenius, A. 1990. Intermediates in Influenza Induced Membrane Fusion. EMBO J. 9, 4231–4241.

    PubMed  CAS  Google Scholar 

  16. Lima, M. C. P., Ramalho-Santos, J., Flasher, D., Slepushkin, V. A., Nir, S. & Düzgünes, N. 1995. Target Membrane Sialic Acid Modulates both Binding and Fusion Activity of Influenza Virus Biochim. Biophys. Acta 1236, 323–330.

    Article  Google Scholar 

  17. Stegmann, T., Bartoldus, I. & Zumbrunn, J. 1995. Influenza Hemagglutinin-Mediated Membrane Fusion: Influence of Receptor Binding on the Lag Phase Preceding Fusion. Biochemistry 34, 1825–1832.

    Article  PubMed  CAS  Google Scholar 

  18. Steck, T. L. & Kant, J. A. 1974. Preparation of Impermeable Ghosts and Inside-Out Vesicles from Human Erythrocyte Membranes. Methods Enzymol. 31, 172–180.

    Article  PubMed  CAS  Google Scholar 

  19. Reed, P. W. 1976. Ionophores. Methods Enzymol. 55, 435–454.

    Article  Google Scholar 

  20. Suzuki, Y. 1994. Gangliosides as Influenza Virus Receptors. Variation of Influenza Viruses and Their Recognition of the Receptor Sialo-Sugar Chains. Prog. Lipid Res. 33, 429–457.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria C. Pedroso de Lima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramalho-Santos, J., de Lima, M.C.P. Role of a transbilayer pH gradient in the membrane fusion activity of the influenza virus hemagglutinin: Use of the R18 assay to monitor membrane merging. Biol Proced Online 1, 107–113 (1999). https://doi.org/10.1251/bpo13

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1251/bpo13

Keywords