Skip to main content

The use of microscopy and three-dimensional visualization to evaluate the structure of microbial biofilms cultivated in the calgary biofilm device

Abstract

Microbes frequently live within multicellular, solid surface-attached assemblages termed biofilms. These microbial communities have architectural features that contribute to population heterogeneity and consequently to emergent cell functions. Therefore, three-dimensional (3D) features of biofilm structure are important for understanding the physiology and ecology of these microbial systems. This paper details several protocols for scanning electron microscopy and confocal laser scanning microscopy (CLSM) of biofilms grown on polystyrene pegs in the Calgary Biofilm Device (CBD). Furthermore, a procedure is described for image processing of CLSM data stacks using amira™, a virtual reality tool, to create surface and/or volume rendered 3D visualizations of biofilm microorganisms. The combination of microscopy with microbial cultivation in the CBD — an apparatus that was designed for highthroughput susceptibility testing — allows for structure-function analysis of biofilms under multivariate growth and exposure conditions.

References

  1. Chandra J, Zhou G, Ghannoum MA. Fungal biofilms and antimycotics. Curr Drug Targets 2005; 6:887–894.

    Article  PubMed  CAS  Google Scholar 

  2. Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: From the natural environment to infectious diseases. Nat Rev Microbiol 2004; 2:95–108.

    Article  PubMed  CAS  Google Scholar 

  3. Harrison JJ, Turner RJ, Marques LLR, Ceri H. Biofilms: A new understanding of these microbial communities is driving a revolution that may transform the science of microbiology. Am Sci 2005; 93:508–515.

    Google Scholar 

  4. Camilli A, Bassler BL. Bacterial small-molecule signaling pathways. Science 2006; 311:1113–1116.

    Article  PubMed  CAS  Google Scholar 

  5. Parsek MR, Greenberg EP. Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol 2005; 13:27–33.

    Article  PubMed  CAS  Google Scholar 

  6. Stoodley P, Sauer K, Davies DG, Costerton JW. Biofilms as complex differentiated communities. Annu Rev Microbiol 2002; 56:187–209.

    Article  PubMed  CAS  Google Scholar 

  7. Xu KD, Stewart PS, Xia F, Huang C, McFeters GA. Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilm is determined by oxygen availability. Appl Environ Microbiol 1998; 64:4035–4039.

    PubMed  CAS  Google Scholar 

  8. Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, Ghannoum MJ. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol 2001; 183:5385–5394.

    Article  PubMed  CAS  Google Scholar 

  9. Borriello G, Werner E, Roe F, Kim AM, Ehrlich GD, Stewart PS. Oxygen limitation contributes to antibiotic tolerance of Pseudomonas aeruginosa in biofilms. Antimicrob Agents Chemother 2004; 48:2659–2664.

    Article  PubMed  CAS  Google Scholar 

  10. Purevdorj-Gage B, Costerton WJ, Stoodley P. Phenotypic differentiation and seeding dispersal in non-mucoid and mucoid Pseudomonas aeruginosa biofilms. Microbiology 2005; 151:1569–1576.

    Article  PubMed  CAS  Google Scholar 

  11. Garcia-Medina R, Dunne WM, Singh PK, Brody SL. Pseudomonas aeruginosa acquires biofilm-like properties within airway epithelial cells. Infect Immun 2005; 73:8298–8305.

    Article  PubMed  CAS  Google Scholar 

  12. Stanley NR, Lazazzera BA. Environmental signals and regulatory pathways that influence biofilm formation. Mol Microbiol 2004; 52:917–924.

    Article  PubMed  CAS  Google Scholar 

  13. Donlan RM. Biofilms: microbial life on surfaces. Emerg Infect Dis 2002; 8:881–890.

    PubMed  Google Scholar 

  14. Liu Y, Tay JH. The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge. Water Res 2002; 36:1653–1665.

    Article  PubMed  CAS  Google Scholar 

  15. Ceri H, Olson ME, Stremick C, Read RR, Morck DW, Buret AG. The Calgary Biofilm Device: New technology for rapid determination of antibiotic susceptibilities in bacterial biofilms. J Clin Microbiol 1999; 37:1771–1776.

    PubMed  CAS  Google Scholar 

  16. Harrison JJ, Ceri H, Stremick C, Turner RJ. Biofilm susceptibility to metal toxicity. Environ Microbiol 2004; 6:1220–1227.

    Article  PubMed  CAS  Google Scholar 

  17. Harrison JJ, Turner RJ, Ceri H. High-throughput metal susceptibility testing of microbial biofilms. BMC Microbiol 2005; 5:53.

    Article  PubMed  Google Scholar 

  18. King EO, Ward MK, Raney DC. Two simple media for the demonstration of pyocyanin and fluorescein. J Lab Clin Med 1954; 44:301–307.

    PubMed  CAS  Google Scholar 

  19. Teitzel GM, Parsek MR. Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl Environ Microbiol 2003; 69:2313–2320.

    Article  PubMed  CAS  Google Scholar 

  20. Harrison JJ, Ceri H, Badry EA, Roper NJ, Tomlin KL, Turner RJ. Effects of the twin-arginine translocase on the structure and antimicrobial susceptibility of Escherichia coli biofilms. Can J Microbiol 2005; 51:671–683.

    Article  PubMed  CAS  Google Scholar 

  21. Davies JA, Harrison JJ, Marques LLR, Foglia GR, Stremick CA, Storey DG, Turner RJ, Olson ME, Ceri H. The GacS sensor kinase controls phenotypic reversion of small colony variants isolated from biofilms of Pseudomonas aeruginosa PA14. FEMS Microbiol Ecol 2007; 59:32–46.

    Article  PubMed  CAS  Google Scholar 

  22. Harrison JJ, Rabiei M, Turner RJ, Badry EA, Sproule KM, Ceri H. Metal resistance in Candida biofilms. FEMS Microbiol Ecol 2006; 55:479–491.

    Article  PubMed  CAS  Google Scholar 

  23. Morck DW, Lam K, McKay SG, Olson ME, Prosser B, Ellis BD, Cleeland R, Costerton JW. Comparative evaluation of fleroxacin, ampicillin, trimethoprimsulfamethoxazole, and gentamicin as treatments of catheter associated urinary tract infections in a rabbit model. Am J Med 1994; 94:23S-30S.

    Google Scholar 

  24. Bernas T, Asem EK, Robinson JP, Cook PR, Dobrucki JW. Confocal fluorescence imaging of photosensitized DNA denaturation in cell nuclei. Photochem Photobiol 2005; 81:960–969.

    Article  PubMed  CAS  Google Scholar 

  25. Jin Y, Zhang T, Samaranayake YH, Fang HHP, Yip HK, Samaranayake LP. The use of probes and stains for improved assessment of cell viability and extracellular polymeric substances in Candida albicans biofilms. Mycopathologia 2005; 159:353–360.

    Article  PubMed  CAS  Google Scholar 

  26. Wozniak DJ, Wycoff TO, Starkey M, Keyser R, Azadi P, O’Toole GA, Parsek MR. Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Proc Natl Acad Sci USA 2003; 100:7907–7912.

    Article  PubMed  CAS  Google Scholar 

  27. Cunha MV, Sousa SA, Leitão JH, Moreira LM, Videira PA, Sá-Correia I. Studies on the involvement of the exopolysaccharide produced by cystic fibrosis isolates of the Burkholderia cepacia complex in biofilm formation and in persistence of respiratory infections. J Clin Microbiol 2004; 42:3052–3058.

    Article  PubMed  CAS  Google Scholar 

  28. Parkins MD, Ceri H, Storey DG. Pseudomonas aeruginosa GacA, a factor in multihost virulence, is also essential for biofilm formation. Mol Microbiol 2001; 40:1215–1226.

    Article  PubMed  CAS  Google Scholar 

  29. Kirisitis MJ, Prost L, Starkey M, Parsek M. Characterization of colony morphology variants isolated from Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 2005; 71:4809–4821.

    Article  Google Scholar 

  30. Ize B, Porcelli I, Lucchini S, Hinton JC, Berks BC, Palmer T. Novel phenotypes of Escherichia coli tat mutants revealed by global gene expression and phenotypic analysis. J Biol Chem 2004; 279:47543–47554.

    Article  PubMed  CAS  Google Scholar 

  31. Branda SS, Vik S, Friedman L, Kolter R. Biofilms: the matrix revisited. Trends Microbiol 2005; 13:20–26.

    Article  PubMed  CAS  Google Scholar 

  32. Whitchurch CB, Tolker-Neilsen T, Ragas PC, Mattick JS. Extracellular DNA required for bacterial biofilm formation. Science 2002; 295:1487.

    Article  PubMed  CAS  Google Scholar 

  33. Branda SS, Chu F, Kearns DB, Losick R, Kolter R. A major protein component of the Bacillus subtilis biofilm matrix. Mol Microbiol 2006; 59:1229–1238.

    Article  PubMed  CAS  Google Scholar 

  34. Sutherland IW. The biofilm matrix — an immobilized but dynamic microbial environment. Trends Microbiol 2001; 9(5):222–227.

    Article  PubMed  CAS  Google Scholar 

  35. Daims H, Lücker S, Wagner M. daime, a novel image analysis program for microbial ecology and biofilm research. Environ Microbiol 2006; 8:200–213.

    Article  PubMed  CAS  Google Scholar 

  36. Mueller LN, de Brouwer JFC, Almeida JS, Stal LJ, Xavier JB. Analysis of a marine phototrophic biofilm by confocal laser scanning microscopy using the new image quantification software PHLIP. BMC Ecology 2006; 6:1.

    Article  PubMed  Google Scholar 

  37. Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersboll BK, Molin S. Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 2000; 146:2395–2407.

    PubMed  CAS  Google Scholar 

  38. Tomlin KL, Malott RJ, Ramage G, Storey DG, Sokol PA, Ceri H. Quorum-sensing mutations affect attachment and stability of Burkholderia cenocepacia biofilms. Appl Environ Microbiol 2006; 71:5208–5218.

    Article  Google Scholar 

  39. Welch RA, Burland V, Plunkett G III, Redford P, Roesch P, Rasko D, Buckles EL, Liou SR, Boutin A, Hackett J, Stroud D, Mayhew GF, Rose DJ, Zhou S, Schwartz DC, Perna NT, Mobley HL, Donnenberg MS, Blattner FR. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci USA 2002; 99:17020–17024.

    Article  PubMed  CAS  Google Scholar 

  40. Yanisch-Perron C, Vieira J, Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 1985; 33:103–119.

    Article  PubMed  CAS  Google Scholar 

  41. Gibson TJ. Studies on the Epstein-Barr virus genome. Cambridge, UK: University of Cambridge; 1984.

    Google Scholar 

  42. Sambasivarao D, Dawson HA, Zhang G, Shaw G, Hu J, Weiner JH. Investigation of Escherichia coli dimethyl sulfoxide reductase assembly and processing in strains defective for the secindependent protein translocation system membrane targeting and translocation. J Biol Chem 2001; 276:20167–20174.

    Article  PubMed  CAS  Google Scholar 

  43. Rahme LG, Stevens EJ, Wolfort J, Shao J, Tompkins RG, Ausubel FM. Common virulence factors for bacterial pathogenicity in plants and animals. Science 1995; 268:1899–1902.

    Article  PubMed  CAS  Google Scholar 

  44. Radtke C, Cook WS, Anderson AJ. Factors affecting antagonism of the growth of Phanerochaete chrysosporium by bacteria isolated from soils. Appl Microbiol Biotechnol 1994; 41:274–280.

    Article  CAS  Google Scholar 

  45. Harrison JJ, Ceri H, Roper NJ, Badry EA, Sproule KM, Turner RJ. Persister cells mediate tolerance to metal oxyanions in Escherichia coli. Microbiology 2005; 151:3181–3195.

    Article  PubMed  CAS  Google Scholar 

  46. Harrison JJ, Turner RJ, Ceri H. Persister cells, the biofilm matrix and tolerance to metal cations in biofilm and planktonic Pseudomonas aeruginosa. Environ Microbiol 2005; 7:981–994.

    Article  PubMed  CAS  Google Scholar 

  47. Harrison JJ, Ceri H, Stremick C, Turner RJ. Differences in biofilm and planktonic cell mediated reduction of metalloid oxyanions. FEMS Microbiol Lett 2004; 235:357–362.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond J. Turner.

Rights and permissions

Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Harrison, J.J., Ceri, H., Yerly, J. et al. The use of microscopy and three-dimensional visualization to evaluate the structure of microbial biofilms cultivated in the calgary biofilm device. Biol. Proced. Online 8, 194–215 (2006). https://doi.org/10.1251/bpo127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1251/bpo127

Indexing terms

  • Biofilms
  • Imaging, Three-Dimensional