Skip to main content

Use of three-dimensional collagen gels to study mechanotransduction in t47d breast epithelial cells

Abstract

Several pathological and disease conditions can alter the mechanical properties of the extracellular matrix (ECM). Conversely, some diseases may arise from changes in the density or rigidity of the ECM. This necessitates the use and development of in vitro models to understand how both biophysical and biochemical signals regulate complex cellular behaviors. T47D breast epithelial cells will differentiate into duct-like tubules when cultured in a floating three-dimensional (3D) collagen gel, but not a 3D collagen gel that is left attached to the culture dish. This paper details several protocols we have developed for analyzing breast cell biology in 3D matrices, including culturing cells in 3D collagen gels, immunostaining cellular structures, and performing biochemical procedures directly from cells embedded in collagen gels.

References

  1. Boyd NF, Lockwood GA, Byng JW, Tritchler DL, Yaffe MJ. Mammographic densities and breast cancer risk. Cancer Epidemiol Biomarkers Prev 1998; 7(12):1133–1144.

    PubMed  CAS  Google Scholar 

  2. Emerman JT, Pitelka DR. Maintenance and induction of morphological differentiation in dissociated mammary epithelium on floating collagen membranes. In Vitro 1977; 13(5):316–328.

    Article  PubMed  CAS  Google Scholar 

  3. Lee EY, Parry G, Bissell MJ. Modulation of secreted proteins of mouse mammary epithelial cells by the collagenous substrata. J Cell Biol 1984; 98(1):146–155.

    Article  PubMed  CAS  Google Scholar 

  4. Parry G, Lee EY, Farson D, Koval M, Bissell MJ. Collagenous substrata regulate the nature and distribution of glycosaminoglycans produced by differentiated cultures of mouse mammary epithelial cells. Exp Cell Res 1985; 156(2):487–499.

    Article  PubMed  CAS  Google Scholar 

  5. Streuli CH, Bissell MJ. Expression of extracellular matrix components is regulated by substratum. J Cell Biol 1990; 110(4):1405–1415.

    Article  PubMed  CAS  Google Scholar 

  6. Barcellos-Hoff MH, Aggeler J, Ram TG, Bissell MJ. Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane. Development 1989; 105(2):223–235.

    PubMed  CAS  Google Scholar 

  7. Hall HG, Farson DA, Bissell MJ. Lumen formation by epithelial cell lines in response to collagen overlay: a morphogenetic model in culture. Proc Natl Acad Sci USA 1982; 79(15):4672–4676.

    Article  PubMed  CAS  Google Scholar 

  8. Briand P, Petersen OW, Van Deurs B. A new diploid nontumorigenic human breast epithelial cell line isolated and propagated in chemically defined medium. In Vitro Cell Dev Biol 1987; 23(3):181–188.

    Article  PubMed  CAS  Google Scholar 

  9. Weaver VM, Howlett AR, Langton-Webster B, Petersen OW, Bissell MJ. The development of a functionally relevant cell culture model of progressive human breast cancer. Semin Cancer Biol 1995; 6(3):175–184.

    Article  PubMed  CAS  Google Scholar 

  10. Weaver VM, Petersen OW, Wang F et al. Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J Cell Biol 1997; 137(1):231–245.

    Article  PubMed  CAS  Google Scholar 

  11. Muthuswamy SK, Li D, Lelievre S, Bissell MJ, Brugge JS. ErbB2, but not ErbB1, reinitiates proliferation and induces luminal repopulation in epithelial acini. Nat Cell Biol 2001; 3(9):785–792.

    Article  PubMed  CAS  Google Scholar 

  12. Freake HC, Marcocci C, Iwasaki J, MacIntyre I. 1,25-dihydroxyvitamin D3 specifically binds to a human breast cancer cell line (T47D) and stimulates growth. Biochem Biophys Res Commun 1981; 101(4):1131–1138.

    Article  PubMed  CAS  Google Scholar 

  13. Keely P, Fong A, Zutter M, Santoro S. Alteration of collagen-dependent adhesion, motility, and morphogenesis by the expression of antisense a2 integrin mRNA in mammary cells. J Cell Science 1995; 108:595–607.

    PubMed  CAS  Google Scholar 

  14. Keely PJ, Wu JE, Santoro SA. The spatial and temporal expression of the alpha 2 beta 1 integrin and its ligands, collagen I, collagen IV, and laminin, suggest important roles in mouse mammary morphogenesis. Differentiation 1995; 59(1):1–13.

    Article  PubMed  CAS  Google Scholar 

  15. al Adnani MS, Taylor S, al-Bader AA, al-Zuhair AG, McGee JO. Immunohistochemical localization of collagens and fibronectin in human breast neoplasms. Histol Histopathol 1987; 2(3):227–238.

    PubMed  Google Scholar 

  16. Hewitt RE, Powe DG, Morrell K et al. Laminin and collagen IV subunit distribution in normal and neoplastic tissues of colorectum and breast. Br J Cancer 1997; 75(2):221–229.

    PubMed  CAS  Google Scholar 

  17. Debnath J, Muthuswamy SK, Brugge JS. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 2003; 30(3):256–268.

    Article  PubMed  CAS  Google Scholar 

  18. Janmey PA, Weitz DA. Dealing with mechanics: mechanisms of force transduction in cells. Trends Biochem Sci 2004; 29(7):364–370.

    Article  PubMed  CAS  Google Scholar 

  19. Grinnell F. Fibroblast biology in three-dimensional collagen matrices. Trends Cell Biol 2003; 13(5):264–269.

    Article  PubMed  CAS  Google Scholar 

  20. Grinnell F. Fibroblast-collagen-matrix contraction: growth-factor signalling and mechanical loading. Trends Cell Biol 2000; 10(9):362–365.

    Article  PubMed  CAS  Google Scholar 

  21. Roeder BA, Kokini K, Sturgis JE, Robinson JP, Voytik-Harbin SL. Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure. J Biomech Eng 2002; 124(2):214–222.

    Article  PubMed  Google Scholar 

  22. Wozniak MA, Desai R, Solski PA, Der CJ, Keely PJ. ROCK-generated contractility regulates breast epithelial cell differentiation in response to the physical properties of a three-dimensional collagen matrix. J Cell Biol 2003; 163(3):583–595.

    Article  PubMed  CAS  Google Scholar 

  23. Tseng MT, Safa AR. Light, fluorescent, and electron microscopic analysis of cultured breast tumor cells (T-47D) treated with 9,10- anthracenedicarboxaldehyde bis[(4,5-dihydro-1Himidazol-2-yl)hydrazone] dihydrochloride. Cancer Res 1983; 43(12 Pt 1):5910–5914.

    PubMed  CAS  Google Scholar 

  24. Korah RM, Sysounthone V, Scheff E, Wieder R. Intracellular FGF-2 promotes differentiation in T-47D breast cancer cells. Biochem Biophys Res Commun 2000; 277(1):255–260.

    Article  PubMed  CAS  Google Scholar 

  25. Schafer JM, Lee ES, O’Regan RM, Yao K, Jordan VC. Rapid development of tamoxifen-stimulated mutant p53 breast tumors (T47D) in athymic mice. Clin Cancer Res 2000; 6(11):4373–4380.

    PubMed  CAS  Google Scholar 

  26. Keydar I, Chen L, Karby S et al. Establishment and characterization of a cell line of human breast carcinoma origin. Eur J Cancer 1979; 15(5):659–670.

    PubMed  CAS  Google Scholar 

  27. Kolodney MS, Wysolmerski RB. Isometric contraction by fibroblasts and endothelial cells in tissue culture: a quantitative study. J Cell Biol 1992; 117(1):73–82.

    Article  PubMed  CAS  Google Scholar 

  28. Delvoye P, Wiliquet P, Leveque JL, Nusgens BV, Lapiere CM. Measurement of mechanical forces generated by skin fibroblasts embedded in a three-dimensional collagen gel. J Invest Dermatol 1991; 97(5):898–902.

    Article  PubMed  CAS  Google Scholar 

  29. Hovey RC, Trott JF. Morphogenesis of mammary gland development. Adv Exp Med Biol 2004; 554:219–228.

    PubMed  CAS  Google Scholar 

  30. Howard BA, Gusterson BA. Human breast development. J Mammary Gland Biol Neoplasia 2000; 5(2):119–137.

    Article  PubMed  CAS  Google Scholar 

  31. Gudjonsson T, Ronnov-Jessen L, Villadsen R, Rank F, Bissell MJ, Petersen OW. Normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for polarity and basement membrane deposition. J Cell Sci 2002; 115(Pt 1):39–50.

    PubMed  CAS  Google Scholar 

  32. Brown D, Gatter K. KI67 protein: the immaculate deception? Histopathology 2002; 40(1):2–11.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia J. Keely.

Rights and permissions

Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Wozniak, M.A., Keely, P.J. Use of three-dimensional collagen gels to study mechanotransduction in t47d breast epithelial cells. Biol. Proced. Online 7, 144–161 (2005). https://doi.org/10.1251/bpo112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1251/bpo112

Indexing terms

  • Cell Culture Techniques
  • Signal Transduction
  • Mechanotransduction, Cellular
  • Epithelial Cells