Skip to main content

Comparative proteomics using 2-D gel electrophoresis and mass spectrometry as tools to dissect stimulons and regulons in bacteria with sequenced or partially sequenced genomes

Abstract

We propose two-dimensional gel electrophoresis (2-DE) and mass spectrometry to define the protein components of regulons and stimulons in bacteria, including those organisms where genome sequencing is still in progress. The basic 2-DE protocol allows high resolution and reproducibility and enables the direct comparison of hundreds or even thousands of proteins simultaneously. To identify proteins that comprise stimulons and regulons, peptide mass fingerprint (PMF) with matrix-assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI-TOF-MS) analysis is the first option and, if results from this tool are insufficient, complementary data obtained with electrospray ionization tandem-MS (ESI-MS/MS) may permit successful protein identification. ESI-MS/MS and MALDI-TOF-MS provide complementary data sets, and so a more comprehensive coverage of a proteome can be obtained using both techniques with the same sample, especially when few sequenced proteins of a particular organism exist or genome sequencing is still in progress.

References

  1. O’Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem 1975; 250:4007–4021.

    PubMed  CAS  Google Scholar 

  2. Bjellqvist B, Ek K, Richetti PG, Gianazza E, Gorg A, Westermeir R, Postel W. Isoelectric focusing in immobilized pH gradients: principle, methodology and some applications. J Biochem Biophys Methods 1982; 6:317–339.

    Article  PubMed  CAS  Google Scholar 

  3. Deiwick J, Hensel M. Regulation of virulence genes by environmental signals in Salmonella typhimurium. Electrophoresis 1999; 20:813–817.

    Article  PubMed  CAS  Google Scholar 

  4. Encarnación S, del Carmen Vargas M, Dunn MF, Dávalos A, Mendoza G, Mora Y, Mora J. AniA regulates reserve polymer accumulation and global protein expression in Rhizobium etli. J Bacteriol 2002; 184:2287–2295.

    Article  PubMed  Google Scholar 

  5. Eymann C, Homuth G, Scharf C, Hecker M. Bacillus subtilis functional genomics: global characterization of the stringent response by proteome and transcriptome analysis. J Bacteriol 2002; 184:2500–2520.

    Article  PubMed  CAS  Google Scholar 

  6. Encarnación S, Guzmán Y, Dunn MF, Hernández M, del Carmen Vargas M, Mora J. Proteome analysis of aerobic and fermentative metabolism in Rhizobium etli CE3. Proteomics 2003; 3:1077–1085.

    Article  PubMed  Google Scholar 

  7. Henzel WJ, Billeci TM, Stults JT, Wong SC, Grimley C, Watanabe C. Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases. Proc Natl Acad Sci USA 1993; 90:5011–5015.

    Article  PubMed  CAS  Google Scholar 

  8. Kamo M, Kawakami T, Miyatake N, Tsugita A. Separation and characterization of Arabidopsis thaliana proteins by two-dimensional gel electrophoresis. Electrophoresis 1995; 16:423–430.

    Article  PubMed  CAS  Google Scholar 

  9. Corbett JM, Dunn MJ, Posch A, Gorg A. Positional reproducibility of protein spots in two-dimensional polyacrylamide gel electrophoresis using immobilized pH gradient isoelectric focusing in the first dimension: an interlaboratory comparison. Electrophoresis 1994; 15:1205–1211.

    Article  PubMed  CAS  Google Scholar 

  10. Klose J, Kobalz U. Two-dimensional electrophoresis of proteins: an updated protocol and implications for a functional analysis of the genome. Electrophoresis 1995; 16:1034–1059.

    Article  PubMed  CAS  Google Scholar 

  11. Oh-Ishi M, Satoh M, Maeda T. Preparative two-dimensional gel electrophoresis with agarose gels in the first dimension for high molecular mass proteins. Electrophoresis 2000; 21:1653–1669.

    Article  PubMed  CAS  Google Scholar 

  12. Patterson S, Aebersold, R. Mass spectrometric approaches for the identification of gel-separated proteins. Electrophoresis 1995; 16:1791–1814.

    Article  PubMed  CAS  Google Scholar 

  13. Nyman TA. The role of mass spectrometry in proteome studies. Biomol Eng 2001; 18; 221–227.

    Article  PubMed  CAS  Google Scholar 

  14. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. Electrospray ionization for mass spectrometry of large biomolecules. Science 1989; 246:64–71.

    Article  PubMed  CAS  Google Scholar 

  15. Karas M, Bahr U, Ingendoh A, Hillenkamp F. Laser desorption-ionization mass spectrometric of proteins with masses 100,000 to 250,000 dalton. Angew Chem Int Ed Eng 1989; 28:760–761.

    Article  Google Scholar 

  16. Link A, Eng J, Schieltz D, Carmack E, Mize G, Morris D, Garvik B, Yates J. Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol 1999; 17: 676–682.

    Article  PubMed  CAS  Google Scholar 

  17. Porubleva L, Vander VK, Kothari S, Livier DJ, Chitnis PR. The proteome of maize: use of gene sequence and expressed sequence tag data for identification of proteins with mass fingerprints. Electrophoresis 2001; 22:1724–1738.

    Article  PubMed  CAS  Google Scholar 

  18. Liska AJ, Popov AV, Sunyaev S, Coughlin P, Habermann B, Shevchenko A, Bork P, Karsenti E, Shevchenko A. Homology-based functional proteomics by mass spectrometry: application to the Xenopus microtubule-associated proteome. Proteomics 2004;4:2707–2721.

    Article  PubMed  CAS  Google Scholar 

  19. Bernhardt J, Weibezahn J, Scharf C, Hecker M. Bacillus subtilis during feast and famine: visualization of the overall regulation of protein synthesis during glucose starvation by proteome analysis. Genome Res 2003; 13:224–237.

    Article  PubMed  CAS  Google Scholar 

  20. Rosen R, Ron EZ. Proteome analysis in the study of the bacterial heat-shock response. Mass Spectrom Rev 2002; 21:244–265.

    Article  PubMed  CAS  Google Scholar 

  21. VanBogelen RA, Schiller EE, Thomas JD, Neidhardt FC. Diagnosis of cellular states of microbial organisms using proteomics. Electrophoresis 1999; 20:2149–2159.

    Article  PubMed  CAS  Google Scholar 

  22. Encarnación S, Dunn M, Willms K, Mora J. Fermentative and aerobic metabolism in Rhizobium etli. J Bacteriol 1995; 177:3058–3066.

    PubMed  Google Scholar 

  23. Shevchenko A, Wilm M, Vorm O, Mann M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 1996; 68:850–858.

    Article  PubMed  CAS  Google Scholar 

  24. Galibert F, Finan TM, Long SR, Puhler A, Abola P, Ampe F, Barloy-Hubler F, Barnett MJ, Becker A, Boistard P, Bothe G, Boutry M, Bowser L, Buhrmester J, Cadieu E, Capela D, Chain P, Cowie A, Davis RW, Dreano S, Federspiel NA, Fisher RF, Gloux S, Godrie T, Goffeau A, Golding B, Gouzy J, Gurjal M, Hernández-Lucas I, Hong A, Huizar L, Hyman RW, Jones T, Kahn D, Kahn ML, Kalman S, Keating DH, Kiss E, Komp C, Lelaure V, Masuy D, Palm C, Peck MC, Pohl TM, Portetelle D, Purnelle B, Ramsperger U, Surzycki R, Thebault P, Vandenbol M, Vorholter FJ, Weidner S, Wells DH, Wong K, Yeh KC, Batut J. The composite genome of the legume symbiont Sinorhizobium meliloti. Science 2001; 293: 668–672.

    Article  PubMed  CAS  Google Scholar 

  25. Kaneko T, Nakamura Y, Sato S, Asamizu E, Kato T, Sasamoto S, Watanabe A, Idesawa K, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Mochizuki Y, Nakayama S, Nakazaki N, Shimpo S, Sugimoto M, Takeuchi C, Yamada M, Tabata S. Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 2000; 7:331–338.

    Article  PubMed  CAS  Google Scholar 

  26. Goodner B, Hinkle G, Gattung S, Miller N, Blanchard M, Qurollo B, Goldman BS, Cao Y, Askenazi M, Halling C, Mullin L, Houmiel K, Gordon J, Vaudin M, Iartchouk O, Epp A, Liu F, Wollam C, Allinger M, Doughty D, Scott C, Lappas C, Markelz B, Flanagan C, Crowell C, Gurson J, Lomo C, Sear C, Strub G, Cielo C, Slater S. Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 2001; 14:2323–2328.

    Article  Google Scholar 

  27. González V, Bustos P, RamÍrez-Romero MA, Medrano-Soto A, Salgado H, Hernández-González I, Hernández-Celis JC, Quintero V, Moreno-Hagelsieb G, Girard L, Rodriguez O, Flores M, Cevallos MA, Collado-Vides J, Romero D, Dávila G. The mosaic structure of the symbiotic plasmid of Rhizobium etli CFN42 and its relation to other symbiotic genome compartments. Genome Biol 2003; 4:R36.

    Google Scholar 

  28. del Carmen Vargas M, Encarnación S, Dávalos A, Reyes-Pérez A, Mora Y, García-de los Santos A, Brom S, Mora J. Only one catalase, katG, is detectable in Rhizobium etli, and is encoded along with the regulator OxyR on a plasmid replicon. Microbiology 2003; 149:1165–1176.

    Article  Google Scholar 

  29. Chevallet M, Santoni V, Poinas A, Rouquie D, Fuchs A, Kieffer S, Rossignol M, Lunardi J, Garin J, Rabilloud T. New zwitterionic detergents improve the analysis of membrane proteins by two-dimensional electrophoresis. Electrophoresis 1998; 19:1901–1909.

    Article  PubMed  CAS  Google Scholar 

  30. Görg A, Obermaier C, Boguth G, Harder A, Scheibe B, Wildgruber R, Weiss W. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 2000; 21:1037–1053.

    Article  PubMed  Google Scholar 

  31. Sabounchi-Schutt F, Astrom J, Olsson I, Eklund A, Grunewald J, Bjellqvist B. An immobiline DryStrip application method enabling high-capacity two-dimensional gel electrophoresis. Electrophoresis 2000; 21:3649–3656.

    Article  PubMed  CAS  Google Scholar 

  32. Hesketh AR, Chandra G, Shaw AD, Rowland JJ, Kell DB, Bibb MJ, Chater KF. Primary and secondary metabolism, and post-translational protein modifications as portrayed by proteomic analysis of Streptomyces coelicolor. Mol Microbiol 2002; 46:917–932.

    Article  PubMed  CAS  Google Scholar 

  33. Berggren K, Chernokalskaya E, Steinberg TH, Kemper C, Lopez MF, Diwu Z, Haugland RP, Patton WF. Background-free, high sensitivity staining of proteins in one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gels using a luminescent ruthenium complex. Electrophoresis 2000; 21:2509–2521.

    Article  PubMed  CAS  Google Scholar 

  34. Steinberg TH, Lauber WM, Berggren K, Kemper C, Yue S, Patton WF. Fluorescence detection of proteins in sodium dodecyl sulfate-polyacrylamide gels using environmentally benign, nonfixative, saline solution. Electrophoresis 2000; 21:497–508.

    Article  PubMed  CAS  Google Scholar 

  35. Steinberg TH, Jones LJ, Haugland RP, Singer VL. SYPRO orange and SYPRO red protein gel stains: one-step fluorescent staining of denaturing gels for detection of nanogram levels of protein. Anal Biochem 1996; 239:223–237.

    Article  PubMed  CAS  Google Scholar 

  36. Wilson CM. Staining of proteins on gels: comparisons of dyes and procedures. Methods Enzymol 1983; 91:236–247.

    Article  PubMed  CAS  Google Scholar 

  37. Neuhoff V, Arold N, Taube D, Ehrhardt W. Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis 1988; 9:255–262.

    Article  PubMed  CAS  Google Scholar 

  38. Blum H, Beier H, Gross HJ. Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 1987; 8:93–99

    Article  CAS  Google Scholar 

  39. Yan JX, Wait R, Berkelman T, Harry RA, Westbrook JA, Wheeler CH, Dunn MJ. A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry. Electrophoresis 2000; 21:3666–3672.

    Article  PubMed  CAS  Google Scholar 

  40. Chiu TC, Lin YW, Huang CC, Chrambach A, Chang HT. A simple, rapid, and sensitive method for analysis of SYPRO Red labeled sodium dodecyl sulfate-protein complexes by capillary electrophoresis with laser-induced fluorescence. Electrophoresis 2003; 24:1730–1736.

    Article  PubMed  CAS  Google Scholar 

  41. Patton WF. A thousand points of light: the application of fluorescence detection technologies to two-dimensional gel electrophoresis and proteomics. Electrophoresis 2000; 21:1123–1144.

    Article  PubMed  CAS  Google Scholar 

  42. Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature 2003; 422:198–207.

    Article  PubMed  CAS  Google Scholar 

  43. Habermann B, Oegema J, Sunyaev S, Shevchenko A. The power and the limitations of cross-species protein identification by mass spectrometry-driven sequence similarity searches. Mol Cell Proteomics 2004; 3:238–249.

    Article  PubMed  CAS  Google Scholar 

  44. Liska AJ, Shevchenko A, Pick U, Katz A. Enhanced photosynthesis and redox energy production contribute to salinity tolerance in Dunaliella as revealed by homology-based proteomics. Plant Physiol 2004; 136:2806–2817.

    Article  PubMed  CAS  Google Scholar 

  45. Cottrell JS. Protein identification by peptide mass fingerprinting. Pept Res 1994; 7:115–124.

    PubMed  CAS  Google Scholar 

  46. Jensen ON, Podtelejnikov AV, Mann M. Identification of the components of simple protein mixtures by high-accuracy peptide mass mapping and database searching. Anal Chem 1997; 69:4741–4750.

    Article  PubMed  CAS  Google Scholar 

  47. Steen H, Mann M. The ABC’s (and XYZ’s) of peptide sequencing. Nat Rev Mol Cell Biol 2004; 5:699–711.

    Article  PubMed  CAS  Google Scholar 

  48. Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 Daltons. Anal Chem 1988; 60:2299–2301.

    Article  PubMed  CAS  Google Scholar 

  49. Keough T, Youngquist R, Lacey MA. Method for high-sensitivity peptide sequencing using postsource decay matrix-assisted laser desorption ionization mass spectrometry. Proc Natl Acad Sci USA 1999; 96:7131–7136.

    Article  PubMed  CAS  Google Scholar 

  50. Covey TR, Huang EC, Henion JD. Structural characterization of protein tryptic peptides via liquid chromatography/mass spectrometry and collision-induced dissociation of their doubly charged molecular ions. Anal Chem 1991; 63:1193–1200.

    Article  PubMed  CAS  Google Scholar 

  51. Alwine JC, Kemp DJ, Stark GR. Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proc Natl Acad Sci USA 1977; 74(12):5350–5354.

    Article  PubMed  CAS  Google Scholar 

  52. White BA, Bancroft FC. Cytoplasmic dot hybridization. Simple analysis of relative mRNA levels in multiple small cell or tissue samples. J Biol Chem 1982; 257:8569.

    PubMed  CAS  Google Scholar 

  53. Thomas PS. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci USA 1980; 77:5201–5205.

    Article  PubMed  CAS  Google Scholar 

  54. Dutt MJ, Lee KH. Proteomic analysis. Curr Opin Biotechnol 2000; 11:176–179.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Encarnación.

Rights and permissions

Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Encarnación, S., Hernández, M., Martínez-Batallar, G. et al. Comparative proteomics using 2-D gel electrophoresis and mass spectrometry as tools to dissect stimulons and regulons in bacteria with sequenced or partially sequenced genomes. Biol. Proced. Online 7, 117–135 (2005). https://doi.org/10.1251/bpo110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1251/bpo110

Indexing terms