Skip to main content

A guideline for analyzing circadian wheel-running behavior in rodents under different lighting conditions

Abstract

Most behavioral experiments within circadian research are based on the analysis of locomotor activity. This paper introduces scientists to chronobiology by explaining the basic terminology used within the field. Furthermore, it aims to assist in designing, carrying out, and evaluating wheel-running experiments with rodents, particularly mice. Since light is an easily applicable stimulus that provokes strong effects on clock phase, the paper focuses on the application of different lighting conditions.

References

  1. Dunlap JC, Loros JL, DeCoursey PJ. CHRONOBIOLOGY — biological timekeeping. Sinauer Associates 2004; 3(24):67–105.

    Google Scholar 

  2. Pittendrigh CS. On the mechanism of the entrainment of a circadian rhythm by light cycles. In: Circadian clocks; edited by: Aschoff J, Amsterdam: Elsevier (1965); 277–297.

    Google Scholar 

  3. Pittendrigh CS. Circadian systems: entrainment. In: Handbook of behavioral neurobiology, Vol. 4 Biological Rhythms, edited by Aschoff J, New York: Plenum Press (1981); 95–124.

    Google Scholar 

  4. Pittendrigh CS, Daan S. A functional analysis of circadian pacemakers in nocturnal rodents. IV. Entrainment: Pacemaker as clock. J Comp Physiol A 1976; 106:291–331.

    Article  Google Scholar 

  5. Aschoff J, Daan S, Honma KI. Zeitgeber, entrainment, and masking: some unsettled questions. In: Vertebrate Circadian System (Structure and Physiology), edited by Aschoff J, Daan S, Gross GA, Berlin: Springer-Verlag (1982); 13–24.

    Google Scholar 

  6. Takahashi JS, Turek FW, Moore RY. Circadian Clocks. Handbook of Behavioral Neurobiology 2001; 12:7–43.

    Google Scholar 

  7. Fuller CA, Fuller P. Circadian Rhythms. Encyclopedia of the human brain. (2002); 793–812.

  8. Aschoff J. Exogenous and endogenous components in circadian rhythms. Cold Spring Harbor Symp Quant Biol 1960; 25:11–28.

    PubMed  CAS  Google Scholar 

  9. Zheng B, Albrecht U, Kaasik K, Sage M, Lu W, Vaishnav S, Li Q, Sun ZS, Eichele G, Bradley A, Lee CC. Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock. Cell 2001; 105(5):683–694.

    Article  PubMed  CAS  Google Scholar 

  10. Klante G, Steinlechner S. A short red light pulse during dark phase of LD-cycle perturbs the hamster’s circadian clock. J Comp Physiol 1995; 177(6):775–780.

    Article  CAS  Google Scholar 

  11. Hofstetter JR, Hofstetter AR, Hughes AM, Mayeda AR. Intermittent long-wavelength red light increases the period of daily locomotor activity in mice. J Circadian Rhythms 2005; 3(1):8.

    Article  PubMed  Google Scholar 

  12. Pittendrigh CS, Daan S. A functional analysis of circadian pacemakers in nocturnal rodents. I. The stability and liability of spontaneous frequency. J Comp Physiol A 1976; 106:223–252.

    Article  Google Scholar 

  13. Daan S, Merrow M, Roenneberg T. External time – internal time. J Biol Rhythms 2002; 17 (2):107–109.

    Article  PubMed  Google Scholar 

  14. Steinlechner S, Jacobmeier B, Scherbarth F, Dernbach H, Kruse F, Albrecht U. Robust circadian rhythmicity of Per1 and Per2 mutant mice in constant light, and dynamics of Per1 and Per2 gene expression under long and short photoperiods. J Biol Rhythms 2002; 17(3):202–209.

    Article  PubMed  CAS  Google Scholar 

  15. Daan S, Pittendrigh CS. A functional analysis of circadian pacemakers in nocturnal rodents. II. The variability of phase response curves. J Comp Physiol A 1976; 106:253–266.

    Article  Google Scholar 

  16. Zivkovic B. Clock tutorial #6: To entrain or not to entrain, that is the question. (2005); http://circadiana.blogspot.com

  17. Albrecht U, Foster RG. Placing ocular mutants into a functional context: a chronobiological approach. Methods 2002; 28:465–477.

    Article  PubMed  CAS  Google Scholar 

  18. Banjanin S, Mrosovsky N. Preferences of mice, Mus musculus, for different types of running wheel. Lab Anim 2000; 34(3):313–318.

    Article  PubMed  CAS  Google Scholar 

  19. Deboer T, Tobler I. Running wheel size influences circadian rhythm period and its phase shift in mice. J Comp Phys 2000; 186(10):969–973.

    Article  CAS  Google Scholar 

  20. Brown SA, Zumbrunn G, Flwury-Olela F, Preitner N, Schibler U. Rhythms of mammalian body temperature can sustain peripheral circadian clocks. Curr Biol 2002; 12:1574–1583.

    Article  PubMed  CAS  Google Scholar 

  21. Ingram DK, London ED, Reynolds MA, Waller SB, Goodrick CL. Differential effects of age on motor performance in two mouse strains. Neurobiol Aging 1981; 2(3):221–227.

    Article  PubMed  CAS  Google Scholar 

  22. Valentinuzzi VS, Scarbrough K, Takahashi JS, Turek FW. Effects of aging on the circadian rhythm of wheel-running activity in C57BL/6 mice. American Physiol Soc 1997; R1957–R1964.

  23. Aschoff J. Response curves in circadian periodicity. In: Circadian Clocks, edited by Aschoff J, North-Holland Amsterdam (1965); 95–111.

    Google Scholar 

  24. Albrecht U, Oster H. The circadian clock and behavior. Behav Brain Res 2001; 125(1–2):89–91.

    Article  PubMed  CAS  Google Scholar 

  25. Oster H, Baeriswyl S, Van Der Horst GT, Albrecht U. Loss of circadian rhythmicity in aging mPer1-/- mCry2-/- mutant mice. Genes Dev 2003; 17(11):1366–1379.

    Article  PubMed  CAS  Google Scholar 

  26. Albrecht U, Zheng B, Larkin D, Sun ZS, Lee CC. mPer1 and mPer2 are essential for normal resetting of the circadian clock. J Biol Rhythms 2001; 16(2):100–104.

    Article  PubMed  CAS  Google Scholar 

  27. Knutsson A. Health disorders of shift workers. Occup Med (London) 2003, 53(2):103–108.

    Article  Google Scholar 

  28. Filipski E, Delaunay F, King VM, Wu M, Claustrat B, Gréchez-Cassiau A, Guettier C, Hastings MH, Lévi F. Effects of chronic jet lag on tumor progression in mice. Cancer Res 2004; 64:7879–7885.

    Article  PubMed  CAS  Google Scholar 

  29. Ohta H, Yamazaki S, McMahon DG. Constant light desynchronizes mammalian clock neurons. Nat Neurosci 2005; 8(3):267–269.

    Article  PubMed  CAS  Google Scholar 

  30. Aschoff J. Changes of frequency of periods of activity of mice in constant light and lasting darkness. Pflugers Arch 1952; 255(3):197–203.

    Article  PubMed  CAS  Google Scholar 

  31. Kennaway DJ. Resetting the suprachiasmatic nucleus clock. Front Biosci 2004; 9:56–62

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urs Albrecht.

Rights and permissions

Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Jud, C., Schmutz, I., Hampp, G. et al. A guideline for analyzing circadian wheel-running behavior in rodents under different lighting conditions. Biol. Proced. Online 7, 101–116 (2005). https://doi.org/10.1251/bpo109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1251/bpo109

Indexing terms

  • Photoperiod, Chronobiology
  • Circadian Rhythm
  • Mice