Skip to main content

An improved method for constructing and selectively silanizing double-barreled, neutral liquid-carrier, ion-selective microelectrodes

Abstract

We describe an improved, efficient and reliable method for the vapour-phase silanization of multi-barreled, ion-selective microelectrodes of which the silanized barrel(s) are to be filled with neutral liquid ion-exchanger (LIX). The technique employs a metal manifold to exclusively and simultaneously deliver dimethyldichlorosilane to only the ion-selective barrels of several multi-barreled microelectrodes. Compared to previously published methods the technique requires fewer procedural steps, less handling of individual microelectrodes, improved reproducibility of silanization of the selected microelectrode barrels and employs standard borosilicate tubing rather than the less-conventional theta-type glass. The electrodes remain stable for up to 3 weeks after the silanization procedure. The efficacy of a double-barreled electrode containing a proton ionophore in the ion-selective barrel is demonstrated in situ in the leaf apoplasm of pea (Pisum) and sunflower (Helianthus). Individual leaves were penetrated to depth of 150 µm through the abaxial surface. Microelectrode readings remained stable after multiple impalements without the need for a stabilizing PVC matrix.

References

  1. Hnik P, Holas M, Krekule I, Kuriz N, Mejsnar J, Smiesko V, Ujec E, Vyskocil F. Work-induced potassium changes in skeletal muscle and effluent venous blood assessed by liquid ion-exchanger microelectrodes. Pflugers Arch 1976; 362(1):85–94.

    Article  PubMed  CAS  Google Scholar 

  2. Vyskocil F, Illes P. Non-quantal release of transmitter at mouse neuromuscular junction and its dependence on the activity of Na+-K+ ATP-ase. Pflugers Arch 1977; 370(3):295–297.

    Article  PubMed  CAS  Google Scholar 

  3. Semb SO, Amundsen B, Sejersted OM. A new improved way of making double-barreled ion-selective micro-electrodes. Acta Physiol Scand 1997; 161:1–5.

    Article  PubMed  CAS  Google Scholar 

  4. Miller AJ, Cooksen SJ, Smith SJ, Wells DM. The use of microelectrodes to investigate compartmentation and the transport of metabolized inorganic ions in plants. J Exp Bot 2001; 52:541–549.

    Article  PubMed  CAS  Google Scholar 

  5. Ammann D. Ion-Selective Microelectrodes — Principles, Design and Application. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1986.

    Google Scholar 

  6. Felle H. Proton transport and pH control in Sinapis alba root hairs: A study caried out with double-barrelled pH micro-electrodes. Journal of Experimental Botany 1987; 38(187):340–354.

    Article  CAS  Google Scholar 

  7. Voipio J, Pasternack M, MacLeod K. Ion-sensitive microelectrodes In D. Ogden, Ed, Microelectrode Techniques — The Plymouth Workshop Handbook 2nd Ed. Cambridge: The Company of Biologists Ltd.; 1994. pp. 275–316.

    Google Scholar 

  8. Zeuthen T. How to make and use double-barrelled ion-selective microelectrodes. In E. Boulpaep, G. Giebisch, eds, Current Topics in Membranes and Transport. Vol.13 1980: 31–47.

  9. Thomas RC. Intracellular pH of snail neurons measured with new pH-sensitive glass microelectrode. J Physio 1974; 238:159–180.

    CAS  Google Scholar 

  10. Hagberg H, Larsson S, Haljamae H. A new design of double-barrelled microelectrodes for intracellular pH-measurement in vivo. Acta Physiol Scand 1983;118:149–153.

    Article  PubMed  CAS  Google Scholar 

  11. Thomas RC. Eccentric double micropipette suitable for both pH I micro-electrodes and for intracellular iontophoresis. Proceedings of Physiological Society 1985;371: 24P-25P.

    Google Scholar 

  12. Ammann D, Lanter F, Steiner RA, Schulthess P, Shijo Y, Simon W. Neutral carrier based hydrogen ion selective microelectrode for extra-and intracellular studies. Analytical Chemistry 1981; 53:2267–2269.

    Article  PubMed  CAS  Google Scholar 

  13. Felle H, Bertl A. The fabrication of H+-selective liquid-membrane micro-electrodes for use in plant cells. J Exp Bot 1986; 37(182):1416–1428.

    Article  CAS  Google Scholar 

  14. Lux HD, Neher E. The equilibrium time course of [K+]o in cat cortex. Exp Brain Res 1973; 17:190–205.

    Article  PubMed  CAS  Google Scholar 

  15. Coles JA, Tsacopoulos M. A method of making fine double-barrelled potassium-sensitive micro-electrodes for intracellular recording. J Physiol 1977; 270:12p-14p.

    PubMed  CAS  Google Scholar 

  16. Brown KT, Flaming DG. Advanced Micropipette Techniques for Cell Physiology. IBRO Handbook Series: Methods in the Neurosciences. Vol. 9. A.D. Smith, Ed, New York: John Wiley & Sons; 1995. pp. 235–256.

    Google Scholar 

  17. Walker JL Jr. Ion specific liquid ion exchanger microelectrodes. Anal Chem 1971; 43:89A-92A.

    Article  CAS  Google Scholar 

  18. Ujec E, Keller EEO, Křiž N, Pavlik V, Machek J. Lowimpedance, coaxial, ion-selective, double-barrel microelectrodes and their use in biological measurements. Bioelectrochem Bioenergetics 1980;7:363–369.

    Article  CAS  Google Scholar 

  19. Halliwell JV, Whitaker MJ, Ogden D. Using Microelectrodes In D. Ogden, Ed, Microelectrode Techniques — The Plymouth Workshop Handbook 2nd Ed. Cambridge: The Company of Biologists Ltd.; 1994. pp. 275–316.

    Google Scholar 

  20. Blatt MR, Slayman CL. KCl leakage from microelectrodes and its impact on the membrane parameters of a nonexcitable cell. J Mem Biol 1983;72:223–234.

    Article  CAS  Google Scholar 

  21. Kurkdjian AC, Barbier-Brygoo H. A hydrogen ion-selective liquid-membrane microelectrode for measurement of the vacuolar pH of plant cells in suspension culture. Analytical Biochemistry 1983;132:96–104.

    Article  PubMed  CAS  Google Scholar 

  22. Sonnhof U, Forderer R, Schneider W, Kettenmann H. Cell puncturing with a step motor driven manipulator with simultaneous measurement of displacement. Pflugers Archiv 1982; 392:295–300.

    Article  PubMed  CAS  Google Scholar 

  23. Lowen CZ, Satter RL. Light-promoted changes in apoplastic K+ activity in the Samanea saman pulvinus, monitored with liquid membrane microelectrodes. Planta 1989; 179:421–427.

    Article  Google Scholar 

  24. Munoz J-L, Deyhimi F, Coles JA. Silanization of glass in the making of ion-sensitive microelectrodes. J Neurosci Methods 1983; 8:231–247.

    Article  PubMed  CAS  Google Scholar 

  25. Ruan Y-L, Patrick JW, Brady CJ. The composition of apoplast fluid recovered from intact developing tomato fruit. Austra J Plant Physiol 1996; 23:9–13.

    Article  CAS  Google Scholar 

  26. Gabriel R, Schäefer L, Gerlach C, Rausch T, Kesselmeier J. Factors controlling the emissions of volatile organic acids from leaves of Quercus ilex (holm oak). Atmospheric Environment 1999; 33:1347–1355.

    Article  CAS  Google Scholar 

  27. Felle H, Hanstein S. The apoplastic pH of the substomatal cavity of Vicia faba leaves and its regulation responding to different stress factors. J Exp Bot 2002; 53(366):73–82.

    Article  PubMed  CAS  Google Scholar 

  28. Buck RP, Lindner E. Recommendations for nomenclature of ion-selective electrodes (IUPAC Recommendations 1994). Pure and Applied Chemistry 1994; 66:2528–2536.

    Article  Google Scholar 

  29. Felle H. The apoplastic pH of the Zea mays root cortex as measured with pH-sensitive microelectrodes: aspects of regulation. Journal of Experimental Botany 1998; 49(323):987–995.

    Article  CAS  Google Scholar 

  30. Hanstein S, Felle HH. The influence of atmospheric NH3 on the apoplastic pH green leaves: a noninvasive approach with pH-sensitive microelectrodes. New Phytol 1999; 143:333–338.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael I. Lindinger.

Rights and permissions

Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Deveau, J.S.T., Lindinger, M.I. & Grodzinski, B. An improved method for constructing and selectively silanizing double-barreled, neutral liquid-carrier, ion-selective microelectrodes. Biol. Proced. Online 7, 31–40 (2005). https://doi.org/10.1251/bpo103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1251/bpo103

Indexing terms