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ABSTRACT 
 
Guanine-rich RNA oligonucleotides display many novel structural motifs in recent crystal structures. Here we describe the procedures 
of the chemical synthesis and the purification of such RNA molecules that are suitable for X-ray crystallographic studies. Modifications 
of the previous purification methods allow us to obtain better yields in shorter time. We also provide 24 screening conditions that are 
very effective in crystallization of the guanine-rich RNA oligonucleotides. Optimal crystallization conditions are usually achieved by 
adjustment of the concentration of the metal ions and pH of the buffer. Crystals obtained by this method usually diffract to high 
resolution.  
 

 
INTRODUCTION 

 
Guanine-rich (G-rich) segments are widely found in RNA 
molecules (1, 2). These segments are crucial in some biological 
functions such as in mRNA turn over process (3), packaging of 
HIV RNA (1) and a possible regulatory role in cellular 
metabolism (4). The mechanism of downstream frameshifting in 
translational recoding of mRNA arises from guanine tetraplex 
structure (5). Sequences of consecutive guanines are sometimes 
interrupted by adenines, as shown in 
UGGGGGGAGGGAGGGAGGGA of the 3’-untranslated 
region of chicken elastin mRNA (6), and GGAGG in Shine-
Dalgarno sequence (7). These sequences may participate in 
biological processes. For instance, the fragile X mental 
retardation protein binds specifically to a purine-rich fragment 
containing both guanine and adenine in its mRNA (8). Similarly, 
consecutive guanines are sometimes interrupted by pyrimidines 

in some biological systems, such as GUGG and GCGG in 5S 
rRNA (9), and IGF quartet in FBS (8). The auxiliary downstream 
element in SV40 L pre-mRNA r(GGGGGAGGUGUGGG) (10) 
is an example of the sequences of consecutive guanines 
embedded with pyrimidines, which is bound by hnRNA H/H’ 
protein and their interaction may stimulate the polyadenylation of 
SV40 L pre-mRNA (11).  
 
G-rich oligonucleotides display quite versatile structural 
characteristics (12) and recent crystallographic studies have added 
new features to the structural repertoire (13-18). Four 
consecutive guanines can form guanine-tetraplex in both solution 
(19, 20) and crystalline state (13, 21, 22). When one guanine is 
replaced with an adenine or a uridine, an eight-stranded helical 
fragment (17) and a bulged tetraplex (18) have been observed. All 
these observations indicate that G-rich regions possess greater 
potentials in forming three-dimensional conformations than we 
have expected. These structural evidences imply that G-rich 
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segments may be involved in some biological processes that we 
have not found yet. Thus, the research of the RNA molecules 
with G-rich segments may unveil the biological roles of these 
molecules and enrich our knowledge about base pairing schemes 
such as base tetrads and base octads and formation of multi-
stranded helices.  
 
Chemical synthesis and purification of RNA oligonucleotides 
have experienced great improvement since the 1990s. The 
general principles and methods of synthesis and crystallization of 
RNA molecules have been summarized and described previously 
(23-29). G-rich oligonucleotides have their own characteristic 
features and their conformations strongly depend on their 
interaction with metal ions (30). Our experience shows that 
oligonucleotides that contain more than four consecutive 
guanines may suffer some difficulty in purification. Also the 
present screening conditions of crystallization for 
oligonucleotides usually emphasize the effect of Mg2+ ion (26, 
27). However, Mg2+ ion does not have strong stabilization effect 
on the formation of G-tetraplexes (30). Here we provide an 
effective method in synthesis, purification and crystallization of 
G-rich segments of RNA molecules, which is essential in study of 
these RNA molecules by X-ray crystallography. 
 

MATERIALS AND METHODS 
 
Chemical synthesis and deprotection of 
oligonucleotides 
 
Phosphoramidites (including the bromo-derivatives) and all other 
reagents for the synthesis of G-rich RNA oligonucloetides were 
purchased from Glen Research Corporation. All other chemicals 
were purchased from Aldrich Chemical Company without 
further purification. Oligonucleotides were synthesized on 
Applied Biosystem Synthesizer 391 on 1 µmol scale, using the 
standard phosphoramidite chemistry (Protocol I). The 
synthesized oligonucleotides were then deprotected (Protocol II). 
The sample was first dried by argon flush in the synthesizer and 
then incubated in a solution of 30% (v/v) ethanol in ammonium 
hydroxide. During the incubation, the RNA oligonucleotides 
were cleaved off the solid phase and the cyanoethyl-protecting 
group of phosphate was also removed. The mixture of 
ammonium hydroxide and ethanol was used here instead of only 
ammonium hydroxide for DNA oligonucleotides because of the 
hydrophobicity of the bulky silyl group in RNA. The solution 
was then lyophilized to dryness. To deprotect the 2’-hydroxyl 
group, we added 1.0 ml to 1.5 ml solution of 3:1 (v/v) 
triethylamine trihydrofluoride: N,N-dimethylformamide to the 
sample and let it stay at 55°C for 2 to 3 hours. We used 1-butanol 
to precipitate the RNA because it has stronger precipitating 
effect than ethanol. The solution was kept in -20°C for 6 hours 
or overnight and then was centrifuged. The supernatant was 
decanted and the pellet was saved. In order to get rid of the 
residual 1-butanol which may clog the needle in loading the 
sample in FPLC, we used 5 ml ethanol to wash the pellet, which 
was then lyophilized to dryness.  
 

Ion-exchange FPLC 
 
Chromatographic separation was carried out on a Pharmacia 
FPLC system employing an ion exchange column SourceQ (5 
mm internal dimension, 1.00 ml gel bed) (Protocol III). Samples 
were dissolved in 400 µl distilled water and loaded onto the 
column at the flow rate of 1 ml/min. After washing with 10 ml 
loading buffer (0.05 M ammonium bicarbonate, 20% 
acetonitrile), samples were eluted at a gradient from 5% to 100% 
eluting buffer (1.5 M ammonium bicarbonate, 20% acetonitrile) 
in 60 minutes and at the flow rate of 2.5 ml/min. The process 
was monitored with the absorbance at 260 nm. The last big peak 
coming out of the column usually corresponds to our target 
molecules. The collected fraction of the absorbance peak was 
lyophilized to dryness several times with adding distilled water in 
between until fluffy material has obtained.  
 
Preparation for crystallization trials 
 
The oligonucleotides in fluffy form were weighed to the nearest 
0.01 mg and 2 mM single-stranded concentration was made with 
distilled water. The G-rich oligonucleotides were annealed at 
90°C and crystallization was carried out at room temperature. 
The samples were stored at -20°C before and after crystallization 
trials.  
 
Crystallization methods 
 
Hanging drop vapor diffusion method was employed in all 
crystallization trials. Stock solutions of 24 screening conditions 
were pre-prepared (Table 1). In setting up crystallization trays, 2 
µl of stock solution and 2 µl of RNA samples were added on 
siliconized glass cover slips. In the cases of optimizing 
crystallization conditions, components were added without 
mixing in the following order: buffer, precipitants, polyvalent 
cations, divalent cations, monovalent cations, and RNA 
oligonucleotides. Crystals obtained in this method gave high-
resolution data.  
 
Data collection 
 
Multi-wavelength anomalous diffraction (MAD) data sets were 
collected with synchrotron facilities in the Advanced Photon 
Sources (APS) in the Argonne National Lab. The structures were 
solved by MAD phasing method and refined with CNS program 
package (31). Because of the versatility of G-rich sequences, it is 
difficult to predict the conformations of the G-rich segments just 
from their sequences, as shown in our structures of 
(BrdU)r(GAGGU) (16) and r(U)(BrdG)r(AGGU) (17) and 
r(U)(BrdG)r(UGGU) (18). It is recommended to include the 
bromo-derivatives in the synthesis of G-rich oligonucleotides and 
collect MAD data sets in X-ray diffraction data collection. 
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Table 1: Crystallization screening conditions* 

Condition Salt Polyamine 
1 100 mM KCl 2 mM Cobalt hexammine 
2 100 mM NaCl 2 mM Cobalt hexammine 
3 80 mM BaCl2 2 mM Cobalt hexammine 
4 80 mM SrCl2 2 mM Cobalt hexammine 
5 80 mM CaCl2 2 mM Cobalt hexammine 
6 80 mM MgCl2 2 mM Cobalt hexammine 
7 100 mM KCl + 50 mM 

NaCl 
2 mM Cobalt hexammine 

8 50 mM KCl + 100 mM 
NaCl 

2 mM Cobalt hexammine 

9 100 mM KCl 2 mM Spermine tetra-HCl 
10 100 mM NaCl 2 mM Spermine tetra-HCl 
11 80 mM BaCl2 2 mM Spermine tetra-HCl 
12 80 mM SrCl2 2 mM Spermine tetra-HCl 
13 80 mM CaCl2 2 mM Spermine tetra-HCl 
14 80 mM MgCl2 2 mM Spermine tetra-HCl 
15 100 mM KCl + 50 mM 

NaCl 
2 mM Spermine tetra-HCl 

16 50 mM KCl + 100 mM 
NaCl 

2 mM Spermine tetra-HCl 

17 80 mM KCl + 20 mM 
BaCl2 

2 mM Spermine tetra-HCl 

18 80 mM KCl + 20 mM 
SrCl2 

2 mM Spermine tetra-HCl 

19 80 mM KCl + 20 mM 
CaCl2 

2 mM Spermine tetra-HCl 

20 80 mM KCl + 20 mM 
MgCl2 

2 mM Spermine tetra-HCl 

21 80 mM NaCl + 20 mM 
BaCl2 

2 mM Spermine tetra-HCl 

22 80 mM NaCl + 20 mM 
SrCl2 

2 mM Spermine tetra-HCl 

23 80 mM NaCl + 20 mM 
CaCl2 

2 mM Spermine tetra-HCl 

24 80 mM NaCl + 20 mM 
MgCl2 

2 mM Spermine tetra-HCl 

*Buffer is 40 mM sodium cacodylate (pH 6.0); precipitant in the droplet 
is 5% (v/v) 2-methyl-2,4-pentanediol (MPD); reservoir is 30% MPD. 
 

RESULTS AND DISCUSSION 
 

Purification 
 
For G-rich RNA oligonucleotides, ethanol precipitation alone 
cannot separate the target molecules from the deprotecting 
agents and other contaminating species. Chromatography must 
be employed in the purification. Our experience showed that the 
ion-exchange fast-performance liquid chromatography (FPLC) 
was preferred over the reverse-phase high-pressure liquid 
chromatography (HPLC) because of the higher loading capacity 
of the FPLC column and circumvention of trityl-on 
chromatography. The results indicated that a single ion-exchange 
FPLC run was usually sufficient to obtain the purity suitable for 
X-ray crystallographic study. In the cases of oligonucleotides with 
more than four consecutive guanines, overlapped peaks in the 
absorbance profile may appear. This situation means that 
stronger denaturing conditions are required for the purification in 
FPLC. An analytical run with higher concentration of acetonitrile 

or with heated columns (32) may be needed to figure out the 
appropriate method that should be used for the oligonucleotides. 
The method of increasing the concentration of acetonitrile is easy 
but has some limitation. Increase of acetonitrile will decrease the 
maximum concentration of eluting salts that we can obtain in the 
eluting buffer. If the target molecules cannot be eluted at 100% 
of eluting buffer, we have to change for some other eluting salts 
(such as from ammonium bicarbonate to lithium chloride) or the 
heated column may be used.  
 
Ammonium bicarbonate has the advantage over lithium chloride 
as an eluting salt in that ammonium bicarbonate can vaporize 
during lyophilization. Ethanol precipitation is not required in 
order to get rid of the eluting salt. Thus, we avoid loss of sample 
in ethanol precipitation and save the time waiting for the 
precipitation. However, lithium chloride has greater solubility 
than ammonium bicarbonate and thus it is much easier to be 
dissolved and can have high concentration in solutions 
containing acetonitrile. Lithium chloride may be a useful eluting 
salt at high concentration of acetonitrile.   
 
Crystallization 
 
Buffers and pH 
 
The most commonly employed buffer in crystallization of 
oligonucleotides is cacodylate. Oligonucleotides are usually not 
sensitive to pH of crystallization solutions because the pKa 
values of all groups are not near neutral pH (33). Therefore we 
did not screen pH for the first trial of crystallization. However, 
fine adjustment of the pH was sometimes useful in obtaining 
crystals with high quality.  
 
Metal Ions 
 
G-rich segments have strong tendency to form tetraplex 
structures. Experimental data showed that metal ions are critical 
for the formation of the tetraplexes which selectively chelate 
metal ions with suitable ionic radii (30). Previous solution studies 
showed that tetraplexes can not form without proper monovalent 
cations (34) and that tetraplexes may adopt different 
conformations when they interact with Na+ and K+ ions (35-37). 
Crystal structures showed that Na+ and K+ ions locate between 
every G-tetrad plane along the central axis of DNA tetraplexes 
(14, 15, 21, 22). On the other hand, divalent cation Sr2+ ions 
locate between every other G-tetrad plane in an RNA tetraplex 
(13), and both Na+ and Ba2+ ions can co-exist in the central axis 
of the tetraplex (16). These results show the various coordination 
of metal ions and the selectivity of metal ions in tetraplexes.   
 
The crystallization conditions presented in this study emphasize 
the important involvement of metal ions in G-rich 
oligonucleotides. In the 24 conditions, the important metal ions 
in tetraplex formation (33) have been screened, including two 
monovalent metal ions, Na+ and K+ and four divalent metal ions, 
Ba2+, Sr2+, Ca2+ and Mg2+ (Table 1). Different combinations of 
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monovalent cations and divalent cations have also been tested. 
Once we identified the metal ion(s), different concentrations of 
the metal ion(s) will be optimized. Our results showed that these 
conditions are very effective in identifying the metal ions in 
crystallization of G-rich RNA oligonucleotides and in obtaining 
crystals that diffract to high resolutions. 
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PROTOCOLS 
 

Protocol I: Synthesis of RNA Oligonucleotides in Applied Biosystem Synthesizer 391 
 
1. Dissolve powder phosphoramidites in bottle with anhydrous acetonitrile. The amount of acetonitrile added is listed in the menu of 

Applied Biosystem Synthesizer 391.  
2. Attach the bottles to ports of the synthesizer according to the letters posted on the synthesizer (A for adenine, G for guanine, C for 

cytosine, T for thymine in DNA or uridine in RNA, and X for other modified phosphoramidites). The bromo-derivative 
phosphoramidite should be attached to the X-port and corresponds to X in the sequence.  

3. In the Main Menu, select DNA Editor and in the next screen, select Edit and enter the sequence starting with 5’-terminal residue 
and ending with the 3'-terminal residue with CPG.  

4. Return to Main Menu, and select Start Synthesis. 
5. Select Trityl OFF for purification by FPLC chromatography with SourceQ column. 
6. Monitor the synthesis by observation of the orange color of the eluent. Deep orange color of the eluent for the last residue 

indicates good synthesis of the whole oligonucleotide. 
 
Protocol II: Deprotection of RNA Oligonucleotides 
 
1. When the synthesis is complete, use argon flush to dry the product (about 5 minutes). Take off the column from the synthesizer. 

Unscrew the column and put the powder in a vial of 2 dram. Pour about 4 ml mixture of 30% EtOH in ammonium hydroxide. 
(Ammonium hydroxide should not be opened for more than one month and should be stored in freezer). 

2. The solution stays at room temperature for 24 hours if the oligonucleotides contain bromo-derivated phosphoramidites and away 
from light. Otherwise the solution is incubated at 55°C overnight.  

3. Put the vial in a freezer and let the solution stay inside to be cold enough (about 2 hours) before it is lyophilized to dryness. 
CAUTION: The solution may spill out at the beginning of lyophilization if it is not cold enough.  

4. The sample is stored in freezer if we do not purify the oligonucleotides immediately. 
5. Add 1.0 ml to 1.5 ml of mixture (3:1) of triethylamine-trihydrofluride: N,N-dimethylformamide and incubate at 55°C for 2 to 3 

hours. 
6.  Transfer the solution to 50 ml falcon tube. Add 200 ul H2O and 20 ml 1-butanol. Leave in the freezer for 6 hours or overnight.  
7. Centrifuge for 15 min (pellet is not solid) and decant the supernatant.  
8. Add 5 ml EtOH, vortex for a while and put in freezer and stay for several hours to allow precipitate to form.  
9. Centrifuge and decant the supernatant (need to wash away any remaining 1-butanol).  
10. Pour 0.4 ml distilled water to dissolve the sample and vortex. If not dissolved well, add 10 µl to 20 µl of 2 M TEAA (triethylamine 

acetate). 
11. Centrifuge the sample and save the supernatant for FPLC. 
 
Protocol III: Purification of RNA Oligonucleotides with SourceQ FPLC 
 
1. Wash the SourceQ column with eluting buffer (1.5 M ammonium bicarbonate, 20% (v/v) acetonitrile) until no absorbance is 

observed. 
2. Wash the SourceQ column with loading buffer (0.05 M ammonium bicarbonate, 20% (v/v) acetonitrile) for 10 to 20 minutes 

(about 5 column volume). 
3. Load the sample with loading buffer at flow rate of 1 ml/min. 
4. Wash with loading buffer for 10 minutes after injection of the sample. 
5. Elute the oligonucleotide at a gradient from 5% to 100% eluting buffer in 60 minutes. 
6. Collect the fractions corresponding to the absorption peak at 260 nm.  
7. Lyophilize the collected fractions to dryness.  
8. Add 500 µl H2O and evaporate to dryness. Repeat this process until fluffy materials is obtained. 
9. Weigh the product and add distilled water to make 2mM (single-stranded) RNA stock solution. 
10. Anneal the sample at 90°C and let it cool down slowly to room temperature by itself.  
11. Store in a freezer of -20°C. 


