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ABSTRACT 
 

Quantitative real-time PCR (qPCR) is a commonly used validation tool for confirming gene expression results obtained 
from microarray analysis; however, microarray and qPCR data often result in disagreement. The current study 
assesses factors contributing to the correlation between these methods in five separate experiments employing two-
color 60-mer oligonucleotide microarrays and qPCR using SYBR green. Overall, significant correlation was observed 
between microarray and qPCR results (ρ=0.708, p<0.0001, n=277) using these platforms. The contribution of factors 
including up- vs. down-regulation, spot intensity, ρ-value, fold-change, cycle threshold (Ct), array averaging, tissue 
type, and tissue preparation was assessed. Filtering of microarray data for measures of quality (fold-change and ρ-
value) proves to be the most critical factor, with significant correlations of ρ>0.80 consistently observed when quality 
scores are applied. 

 
 

INTRODUCTION 
 

microarray and qPCR analyses that have led to debate 
over which methods produce the most accurate 
measurements of gene expression (6-12). In this study we 
compiled data from five independent experiments to 
establish the degree of correlation between two-color 
inkjet printed 60-mer oligonucleotide microarrays and 
qPCR using SYBR green. Using this compiled data set we 
sought to identify factors that influence the correlation 
between these two techniques. 

DNA microarrays provide an unprecedented capacity for 
whole genome profiling. However, the quality of gene 
expression data obtained from microarrays can vary 
greatly with platform and procedures used. Quantitative 
real-time PCR (qPCR) is a commonly used validation 
tool for confirming gene expression results obtained 
from microarray analysis; however, microarray and 
qPCR data often result in disagreement. Presently, no 
standard definition of validation exists, correlations of 
qPCR and microarray data are seldom presented in the 
literature, and non-agreeing data are rarely explained. It 
is well documented that both qPCR and microarray 
analysis have inherent pitfalls (1-5) that may significantly 
influence the data obtained from each method. 
Additionally, many different platforms exist for both  

 
Variability in both biological and technical procedures 
can have a great impact on both microarray and qPCR 
results (2, 4) and, as biological variability cannot be 
controlled, care must therefore be taken in the 
experimental design to minimize irregularities and 
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ensure adequate replication to eliminate “noise” in the 
experiment. The quality of RNA is essential to accurate 
results, as gene expression can be affected by carry-over 
of contaminating factors (e.g., different tissues, airborne 
particles, etc.), and salts, alcohols, and phenol, which can 
affect reverse transcriptases used in both qPCR and RNA 
amplification procedures for microarray labeling (3). 
Furthermore, different efficiencies of reverse 
transcriptases and varied priming methods can also 
affect the results of qPCR and microarray experiments 
(3). The effects of dye biases (due, in part, to the physical 
properties of various dyes that affect efficiencies of 
incorporation) (5) and non-specific and/or cross 
hybridizations of labeled targets to array probes (2) are 
unique to microarray procedures. Likewise, qPCR has its 
own sources of error including amplification biases (2), 
the exponential amplification of errors (3), mispriming or 
the formation of primer dimers (1), and the changing 
efficiency of qPCR at later cycles (3, 13). In addition, data 
normalization fundamentally differs between microarray 
analysis and qPCR, the former requiring global 
normalization, while the latter generally utilizes the 
expression of one or more reference genes against which 
all other gene expression is calibrated. Therefore, 
selection and appropriate application of normalization 
criteria may also play a major role in the correlations 
found between these methods. While the above 
mentioned list of the potential pitfalls in microarray and 
qPCR methodologies is long, most sources of error can 
be controlled through robust experimental designs, good 
laboratory practices, and rigorous normalization of the 
data. 

Several studies have attempted to determine what factors 
contribute to the variation in results obtained by 
microarray versus qPCR. Lower correlations were 
consistently reported for genes exhibiting small degrees 
of change, generally less than 2-fold, as compared to 
those showing greater than 2-fold change (4, 15, 19). In 
addition, Etienee et al. (15) found that increased distance 
between the location of the PCR primers and microarray 
probes on a given gene also decreased the correlation 
between the two methods. Beckman et al. (14) 
investigated the effects of array spot intensity on 
correlation, finding that low intensity spots (intensities 
less than the highest intensity of negative controls) and 
spots with one high intensity and one low intensity (for 
2-color arrays) had considerably lower correlations with 
qPCR data than high intensity spots (intensities greater 
than the highest intensity of negative controls). While 
these studies provide insight into some sources of 
variation in qPCR and array correlation, we chose to 
additionally investigate parameters of tissue type, 
sample preparation, and data quality in the context of the 
particular platforms used in a gene expression study. 
 
Oligonucleotide microarrays have become a widely used 
alternative to cDNA microarray because of their superior 
specificity, reproducibility, and ease of design (20). 
However, their ability to accurately report changes in 
gene expression has been debated (10-12, 21 and others). 
Furthermore, given the variation in reported correlations 
between microarray and qPCR results, we wanted to 
assess which aspects of each method may influence 
correlation and to determine if we can define array 
responses that, given specific data parameters, will 
consistently yield significant correlations of 0.80 or 
greater. To this end we have conducted an analysis of the 
correlations observed between two-color oligonucleotide 
microarrays and qPCR results, using SYBR Green, from 
five independent experiments. In studies 1 and 2, adult 
mice were exposed to the excitatory neurotoxin, domoic 
acid (DA), and brain transcriptional response was 
determined over an acute time course or dose response 
in freshly prepared tissue (22). In a third experiment, the 
time course of blood transcriptional response to DA was 
investigated using Qiagen’s PaxGene tubes. Frozen 
tissue was used to investigate the transcriptional 
response in brain from mice exposed to the potent 
neurotoxin brevetoxin (PbTx) was investigated in the 
fourth experiment. Experiment 5 investigated the 

 
A survey of the literature reveals widely ranging 
correlations between microarray and qPCR data of -0.48 
to 0.94 (14-16 and others). Moreover, rarely are these 
correlations presented with statistical analyses and few 
authors define the criteria they used to determine 
acceptable validation of microarray results. Rajeevan et 
al. (17) considered a result valid if the fold change 
measured by both qPCR and microarray were greater 
than or equal to 2-fold. They did not consider the 
magnitude of difference between the measurements, 
which Svaren et al. (18) found to vary significantly. More 
commonplace in the literature is simply the statement 
that results were validated, often with no, or extremely 
low, reported correlations. 
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transcriptional response of a human T-lymphocyte cell 
line to the phycotoxin azaspiracid (AZA). The data sets 
resulting from microarray and qPCR analyses were first 
compared to determine at what frequencies the general 
trends of up- or down-regulation were conserved. The 
effects of several parameters on the correlation of data 
were also investigated, including up- vs. down-
regulation, spot intensity, p-value from microarray 
analysis, fold change, cycle threshold (Ct) values, the use 
of individual or composite array data, tissue type, and 
the use of fresh or frozen tissue. 
 

METHODS 
 

Domoic acid studies 
 
All studies were conducted in accordance with NIH 
guidelines for the ethical care and use of laboratory 
animals. 
 
Time course in brain:  Studies on brain transcriptional 
profiles were carried out as described in Ryan et al. (22). 
Briefly, female mice were dosed intraperitoneally (IP) 
with 4 mg·kg-1 DA, the LD50, (cat. # D6152, Sigma, St. 
Louis, MO) in PBS while the control group was dosed 
with volumetric equivalents of PBS. Three animals per 
treatment or control group were sacrificed at 30 min, 60 
min, and 240 min post-injection by cervical dislocation 
and the brain from each mouse was immediately 
dissected and prepared for RNA extraction. Brains from 
control animals were pooled prior to RNA extraction 
while RNA was extracted from the brains of 
experimental animals individually. 
 
Dose response in brain:  Studies on brain transcriptional 
profiles were carried out as described in Ryan et al. (22). 
Briefly, male animals were dosed by IP injection with 1 
or 4 mg·kg-1 DA in PBS, while the controls were dosed 
with volumetric equivalents of PBS. All mice were 
sacrificed at 60 min by cervical dislocation, the brains 
dissected immediately and the tissue prepared for RNA 
extraction. As in the time course study, brains from three 
control animals were pooled prior to RNA extraction 
while RNA was extracted from the brains of 
experimental animals individually. 
 
Dose response in blood:  Adult female ICR mice (19-22g) 
were maintained as described in Ryan et al. (22). The 

experimental animals were dosed by IP injection with 2.5 
mg·kg-1 DA in PBS, while the controls were dosed with 
volumetric equivalents of PBS. At 12, 24, or 48 h 3 mice 
per treatment or control group were deeply anesthetized 
with isoflurane (Baxter, Deerfield, IL) and blood was 
collected via cardiac puncture and stored in Paxgene 
(Qiagen, Valencia, CA) tubes at room temperature until 
the RNA extraction procedure was completed the 
following day. The blood from three control animals was 
pooled and split between two Paxgene tubes prior to 
extraction while RNA was extracted from the blood of 
each experimental animal individually. 
 
Brevetoxin studies 
 
Adult female ICR mice (19-22g) were maintained as 
described in Ryan et al. (22). The experimental animals 
were dosed by IP injection with an acute dose of 130 
µg·kg-1 brevetoxin-3 (PbTx-3) in PBS with 4% methanol, 
while the controls were dosed with volumetric 
equivalents of methanolic vehicle. At 30, 60, or 240 min 6 
mice per treatment group and 3 controls were sacrificed 
by cervical dislocation; the brains dissected immediately 
and flash frozen until RNA preparation. Prior to RNA 
extraction, 3 brains per control or treatment group were 
pooled. 
 
Azaspiracid studies 
 
Human Jurkat E6-1 lymphocyte T cells (ATCC # TIB-152) 
were grown in RPMI medium supplemented with 10% 
(v/v) fetal bovine serum (FBS) and maintained in 
humidified 5%:95% CO2:air at 37°C. Azaspiracid (AZA-1) 
extracted from mussels (Mytilus edulis) was determined 
to be > 93% pure by NMR and showed < 1% impurity of 
other AZA subtypes/cogners by liquid chromatograph-
mass spectrometry (LC-MS) (23). For each experimental 
replicate (n=2), 60 mL of Jurkat cells were centrifuged at 
1000xg for 7 min and resuspended in 40 mL of fresh 
RPMI medium supplemented with FBS. Freshly 
resuspended cells were inoculated into 35 mm Petri 
dishes containing 2 mL total volume. Total cell numbers 
per dish ranged from 4.4 x 106 to 10.6 x 106 cells for the 
separate replicates. Cells were allowed to grow for at 
least 12 h prior to addition of AZA-1 (10 nM final 
concentration) or equivalent amounts of methanolic 
vehicle (0.1% v/v final). Dishes were harvested for RNA 
extractions at 1, 4, and 24 h and cells were flash frozen in 
liquid nitrogen and stored at -80°C until RNA was 
extracted. 
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RNA extraction 
 
Mouse brain and Jurkat cells:  Following tissue dissection 
or cell harvesting, total RNA was extracted using Tri-
Reagent according to the manufacturer’s protocol 
(Molecular Research Center, Inc., Cincinnati, OH). After 
re-suspension in nuclease-free water, RNA was purified 
using RNeasy columns (Qiagen), quantified by UV-Vis 
spectroscopy, and qualified on a 2100 Bioanalyzer 
(Agilent, Palo Alto, CA). 
 
Blood:  Upon deposition to the Paxgene tube (Qiagen) 
blood cells are lysed and RNA is stabilized. RNA 
extraction and purification was carried out according to 
the manufacturer’s protocol, which includes a RNA 
clean-up step. Following processing, total RNA was 
quantified by UV-Vis spectroscopy and qualified on a 
2100 Bioanalyzer (Agilent). 
 
In all studies, the same RNA was used for both 
microarray and real-time PCR analyses. 
 
Microarray 
 
Total RNA was amplified and labeled with Cy3-dCTP or 
Cy5-dCTP (Perkin Elmer, Boston, MA) using the Agilent 
Low Input Linear Amplification kit according to 
manufacturer’s protocols. Following labeling and clean-
up, cRNA was quantified by UV-Vis spectroscopy and 
0.8-1 µg each of Cy3 and Cy5 labeled targets were 
combined and hybridized to Agilent arrays. The mouse 
brain DA time course and dose response experiments 
utilized an Agilent mouse 22K feature oligonucleotide 
microarray, while the mouse blood dose response and 
brain PbTx TC utilized the 44K mouse whole genome 
array. For all DA experiments, triplicate arrays were run, 
including a dye reversal to account for any dye bias. 
Because 3 experimental samples at each timepoint were 
pooled (final n=2) for the PbTx study, duplicate arrays 
were run which included a dye swap. The azaspiracid 
time course used the human whole genome 44K 
microarray, which was also run in duplicate with a dye 
swap. All arrays were hybridized and processed using a 
SSPE wash according to manufacturer’s protocols. 
Microarrays were imaged using an Agilent microarray 
scanner. Images were extracted with Agilent Feature 
Extraction version A7.5.1 and data analyzed with Rosetta 
Luminator 2.0 gene expression analysis system (Rosetta 
Informatics, Seattle, WA). Using a rank consistency filter, 

features were subjected to a combination linear and 
LOWESS normalization algorithm, the recommended 
algorithm for this microarray platform. This 
normalization allows non-linear corrections at intensities 
where dye chemistries introduce artifactual signal and 
allows linear corrections where signal intensities are 
linear in behavior. Based on the Rosetta error model 
designed for the Agilent platform, a composite array was 
generated at each time point from replicate arrays, in 
which the data for each feature underwent a weighted 
averaging based on feature quality from the individual 
array. 
 
Quantitative real-time PCR 
 
One microgram of total RNA was reverse transcribed 
using Ambion’s RETROscript kit with oligo(dT) primers 
for the 2-step qRT-PCR assays. Gene specific primers 
were used to amplify message by qPCR on a Cepheid 
Smart Cycler (Sunnyvale, CA) using the Qiagen SYBR 
Green master mix or on an ABI 7500 using the ABI SYBR 
Green master mix (Foster City, CA). Primer sets were 
designed against the complete nucleotide sequence, as 
deposited on GenBank, using Vector NTI 9.0.0 
(InforMax, Frederick, MD). The optimum annealing 
temperature for each primer set was determined prior to 
the analysis of experimental samples. The specificity of 
each primer set and molecular weight of the amplicon 
were monitored by dissociation curve analysis and 
further verified by analysis using Agilent’s Bioanalyzer 
2100. A sample volume of 25 µl was used for all assays, 
which contained a 1X final concentration of SYBR green 
PCR master mix, 400 nM gene specific primers, and 1 µl 
template. All samples and standards were run in 
triplicate, except for the azaspiracid time course which 
was run in duplicate. Assays were run using the 
following protocol: 95°C for 15 min or 10 min (Qiagen or 
ABI master mix, respectively), 94°C for 15 sec, gene 
specific annealing temperature (55°-64°C) for 40 sec, 72°C 
for 1 min for 40 cycles, followed by a gradual increase in 
temperature from 60°C to 95°C during the dissociation 
stage. Supplemental Table 1 details the genes validated 
by qPCR and assay conditions. 
 
Following amplification, the instrument software was 
used to set the baseline and threshold for each reaction. 
A cycle threshold (Ct) was assigned at the beginning of 
the logarithmic phase of PCR amplification and the 
difference in the Ct values of the control and 
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experimental samples were used to determine the 
relative expression of the gene in each sample. Prior to 
quantitative analysis, a standard curve was constructed 
using serial dilutions of RT product (species and tissue 
specific) and the efficiency of each primer set was 
determined using the equation [(10 (-1/-slope)-1)·100]. 
Efficiencies of 90-110% were required to include the 
qPCR assay in array validation. Relative expression 
levels between samples were then calculated as fold 
changes, where each PCR cycle represents a two-fold 
change. Therefore, the assay-specific efficiency was not 
used in the calculation of relative expression levels. For 
each experiment, a specific gene was chosen for 
normalization that did not exhibit any significant change 
in expression via microarray. All mouse experiments 
used tubulin, alpha 4 (NM_009447) for normalization 
while the human AZA study utilized an alpha tubulin-
like gene (NM_145042). Statistical analysis was 
performed using a Wilcoxon/Kruskal-Wallis 
nonparametric test or a one-way ANOVA in JMP version 
5.1.2 (SAS Institute Inc., Cary, NC). 
 
Analysis of correlation between microarray and qPCR  
 
Subsequent to microarray data analysis a set of genes 
was chosen for validation by qPCR based on their degree 
of expression change, p-value, and/or known effects of 
the toxin studied. Correlation between the microarray 
and qPCR results for this gene set was then performed 
for each experiment, and the statistical significance of the 
correlations determined. For the microarray, the data 
input into the correlation analysis was the Log2 ratio 
value of the weighted average for each gene on the 
composite array representing all replicate animals. For 
qPCR, we used the mean Log2 ratio value reported by 
qPCR from all replicate animals. Prior to performing 
correlation analyses, the data were tested for normality 
using the Shapiro-Wilk test. Because the data was not 
normally distributed, Spearman’s Rho was used. 
Spearman’s Rho is the rank-based non-parametric 
equivalent of the more commonly used Pearson’s 
correlation calculation. The effects of Ct, array spot p-
value, degree of change, direction of change, and array 
spot intensity on correlation were investigated by 
binning subsets of genes according to these criteria. One-
way ANOVAs were then used to determine the 
relationship between the observed correlations. To 
determine if the use of the weighted average from 
composite arrays influenced the correlation between 

microarray and qPCR, the correlations from the DA time 
course experiment were also calculated using the array 
and qPCR data from individual animals. As the RNA for 
the DA studies was extracted from fresh tissues while the 
RNA for the PbTx-3 study was extracted from frozen 
tissue, these studies were compared to determine any 
effects on data correlation. All statistical analyses utilized 
an alpha value of 0.05 and were performed using JMP 
version 5.1.2. 
 

RESULTS AND DISCUSSION 
 

Data from five different gene expression profiling 
experiments outlined above, using three different inkjet 
printed Agilent 60-mer array designs in a 2-color format 
and SYBR Green qPCR, were analyzed both individually 
and combined to form a single large data set (Table 1). 
These five studies utilized RNA from several different 
sources; mouse brain, both fresh and frozen, mouse 
blood, and a human cell line. Of the 5 data sets, 3 were 
analyzed strictly to validate microarray results for 
publication, in which a selection of genes of biological 
interest identified as substantially up- or down-regulated 
by the array were verified by qPCR. In the mouse brain 
DA time course (TC) and dose response (DR) several 
genes exhibiting either non-significant, very minor, or no 
changes by microarray were also analyzed by qPCR in 
order to provide insight into the effects of fold change 
and data quality on the correlation between these two 
methods.  
 
Overall, a significant correlation of 0.708 was observed in 
the combined data set (Spearman’s Rho, p<0.0001, 
n=277). Correlations for the individual data sets ranged 
from 0.633 – 0.748 (p<0.0001, Table 1). The direction of 
change in expression was in agreement by both qPCR 
and microarray for 72.9% of samples (202 of 277). In 59 of 
the 75 samples (78.7%) where the reported direction of 
change differed, the changes reported by both methods 
were minor (<1.4 fold). The samples that did not report 
the same direction of change by both methods had 
similar distributions of spot intensity, p-values, and Ct as 
the samples that did yield agreement in direction of 
change. This lack of concurrence between methods for 
genes exhibiting low levels of change (<1.4 fold) has been 
commonly reported (4,19,24). 
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Up- vs. down-regulation 
 
A correlation of 0.700 (Spearman’s Rho, p<0.0001, n=169) 
was observed among genes exhibiting up-regulation by 
microarray and was significantly different than the 
correlation of 0.356 (Spearman’s Rho, p=0.0002, n=108) 
observed among down-regulated genes (ANOVA, 
p=0.0042, n=10). This trend was observed in all data sets 
except the mouse blood DA TC, in which down-
regulated genes showed a slightly higher correlation 
than up-regulated genes (Fig. 1a). It is interesting to note, 
the mouse blood DA TC is the only data set that included 
a greater number of down-regulated genes than up-
regulated genes exhibiting 1.4 fold change or greater. 
Overall, 72.2% of down regulated genes exhibited less 
than 1.4 fold change whereas only 60.4% of upregulated 
genes exhibited these low levels of changes in 
expression. The influence of the degree of fold change on 
data correlation will be discussed later. 
 
A similar trend of higher correlations among up-
regulated genes was observed by Beckman et al. (14), 
who proposed that this effect may be due to the 
increased variability observed in low-intensity array 
spots, i.e. down-regulated genes. However, in the current 
study, no trend was apparent in the effects of average 
array spot intensity on correlation of data (Fig. 1b). While 
the current study does not support the results of the 
study by Beckman et al. (14) this may be due to the fact 
that our genes were selected for verification following 
initial microarray analysis. Analysis using Agilent 
Feature Extraction and Rosetta Luminator software 
identifies spots likely to introduce errors due to signal 
strength, high background, and/or poor spot 
morphology, etc. Therefore, the problems introduced by 
low signal to noise ratios that were investigated by 
Beckman et al. (14) were likely excluded from analysis in 
our study and the observed effects are most likely 
influenced by the degree of change exhibited. 
 
The lower correlation between the array and qPCR for 
down-regulated genes may alternatively be due to the 
effects of greater variability associated with decreased 
reaction efficiencies found in qPCR measurements at 
later cycles, where genes with low expression levels 
respond. In general, we observed significantly lower 
correlations at early and late cycle thresholds, especially 
in samples with Ct < 17 or Ct ≥ 31 (Fig. 1c, Kruskal-Wallis, 

p=0.0237, n=31). While we only investigated the effects of 
average signal intensity, the low correlations observed at 
early Cts (i.e. highly expressed genes or markedly up-
regulated genes) may be attributed to the effects of large 
intensity ratios due to large differences in expression 
between the treatments compared as examined by 
Beckman et al. (14). In general, genes exhibiting late Ct 
values corresponded to low intensity microarray spots: 
75.6% of genes with Ct values above the median 
exhibited below-median spot intensity, and thus likely 
represent genes with low expression levels. Likewise, 
75.6% of genes with Ct values below the median 
exhibited above-median spot intensity and thus were 
likely genes with high levels of expression. 
 
Fold change 
 
In general, correlations increased with increasing degree 
of change as measured by both microarray and qPCR. 
Wurmbach et al. (4) reported 100% validation of results 
for genes exhibiting at least 1.6 fold change; however, 
they defined validation as directional confirmation only 
and large discrepancies in the amount of change were 
not addressed in their study. Dallas et al. (25) reported 
decreased correlations for genes expressing less than 1.5 
fold change using probe based qPCR and oligonucleotide 
microarrays. More commonly, a 2 fold change is reported 
as the cutoff below which microarray and qPCR data 
begin to lose correlation. In the current study we 
consistently observed significant correlations of at least 
0.75 where genes exhibited 1.4 fold change or higher 
(Figs. 2a and 2b). Genes exhibiting at least 1.4 fold 
change had significantly higher correlations than those 
demonstrating less change by both microarray (ANOVA, 
p<0.0001, n=12) and qPCR (ANOVA, p=0.0005, n=12). 
 
As fold change in expression is commonly used to filter 
microarray data, we queried the combined data set to 
determine the limitations of our system based on fold 
change measured by microarray. Figures 2c and 2d show 
the combined effects of fold change and spot intensity or 
cycle threshold and illustrate the prevailing impact of 
fold change on data correlation. Genes exhibiting less 
than 1.4 fold change had data correlations of 0.40-0.50, 
regardless of spot intensity or Ct (Figs. 2c and 2d). 
However, when fold change was 1.4 or greater, again 
regardless of spot intensity or Ct, significant data 
correlations of at least 0.80 were observed. Further, the 
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correlations presented in Table 1 have a nearly direct 
relationship with fold change. The mouse blood DA TC, 
which exhibited the highest correlation of 0.748, has the 
highest percentage (50%) of data points exhibiting 1.4 
fold change or greater. The mouse brain DA DR, 
exhibiting the 2nd lowest correlation (0.676), has only 
13.8% of data points exhibiting 1.4 fold change or greater. 
 
Microarray spot p-value 
 
Overall, microarray spot p-value appeared to have a 
considerable effect on the correlations between array and 
qPCR results (Fig. 3a). Among the genes assayed by 
qPCR, those that were labeled as “signature” (genes with 
a composite p≤0.01) by the Luminator gene expression 
analysis software package had a correlation of 0.847 
(Spearman’s Rho, p<0.0001, n=107, data not shown), 
whereas genes that were not called “signature” only 
exhibited a correlation of 0.435 (Spearman’s Rho, 
p<0.0001, n=170, data not shown). However, as indicated 
by the mouse blood DA TC and Human AZA TC data 
sets, a p-value of 0.01 or less does not always yield high 
correlations (Fig. 3a). Genes with a p-value of 0.0001 or 
less exhibited a statistically significantly higher 
correlation than genes with greater p-values (ANOVA, 
p=0.0007, n=22). The calculation of a composite p-value 
includes measurements of signal strength, background 
levels, spot morphology, and fold change from all 
replicate arrays (www.rosettabio.com). Therefore, the 
smaller the p-value reported, the more confidence in the 
accuracy of the microarray results, as the errors 
discussed by Chuaqui et al. (2 and others), including 
experimental noise and non-specific or cross 
hybridization, are discounted. As many microarray data 
analysis programs do not report p-values, a stringent 
filtering of array data using signal to noise ratios and the 
coefficient of variation from replicate arrays may yield a 
final data set of high quality and increased accuracy, and 
thus, increased correlations with qPCR results. 
 
Again, we queried the combined data set based on array 
p-values to determine the limitations of our system, as p-
values (or some other measure of data quality such as 
background to noise ratios) are commonly used to filter 
microarray data. As shown in Figures 3B and 3C, 
significant correlations of at least 0.80 are observed for 
genes with a p-value of 0.0001 or less. As with fold 
change, this analysis demonstrates the predominant 

effect of array data p-value on microarray and qPCR 
correlations, as genes yielding highly significant array 
results generated high correlations regardless of spot 
intensity or Ct values (Fig. 3b and 3c). Given that fold 
change is a component of the p-values generated by 
Agilent and Rosetta data analysis software, the overall 
effect of fold change on data correlation is likely to be 
significant as shown in Figure 4. However, genes with a 
p-value greater than 0.0001 exhibiting a fold change of 
1.4 or greater, only yielded a correlation of 0.676 
(Spearman’s Rho, p=0.0003, n=24), whereas genes with a 
p-value of 0.0001 or less and exhibiting at least a 1.4 fold 
change resulted in a significant correlation of 0.905 
(Spearman’s Rho, p<0.0001, n=72). This increase in 
correlation between microarray and qPCR for highly 
significant genes demonstrates the importance of 
microarray data quality, demonstrated here as composite 
p-values, and not only fold change on the accuracy of 
results. 
 
Composite array data 
 
The correlation analyses presented above are based on a 
single array value for each gene. This value is derived 
from the composite array produced by the analysis 
software, in which each feature of replicate arrays 
underwent a weighted averaging based on feature 
quality. In contrast, the data reported for qPCR was the 
un-weighted average of qPCR results from replicate 
animals. Thus, the microarray and qPCR results may not 
directly correlate as they were averaged in a different 
manner. To determine if the common practice of using 
the composite array biased our results, we next 
calculated the correlation of the DA time course 
experiment in brain in two ways, comparing the 
composite array value to the average qPCR value or 
comparing the individual array and qPCR values for 
each animal. For all queries of the data set, the 
correlation between composite array data and qPCR data 
was very similar to the correlation of individual array 
data and qPCR data and all trends previously discussed 
were maintained (Fig. 5). Overall, the composite array 
and average qPCR values resulted in a correlation of 
0.686 (Spearman’s Rho, p<0.0001, n=84), while the 
individual array and qPCR values resulted in a slightly 
lower correlation of 0.607 (Spearman’s Rho, p<0.0001, 
n=244). Thus, while minor differences were observed, it 
does not appear that the use of the composite array 
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appreciably influenced the observed correlations with 
qPCR data (Wilcoxon, p=0.2014, n=56). If anything, the 
composite array yielded a higher correlation, possibly by 
minimizing the contribution of poorer quality array 
spots. 
 
Fresh tissue vs. frozen tissue 
 
It is well documented that RNA quality may be severely 
impacted by handling and storage conditions (1, 26-28, 
and others). As RNA was extracted from fresh tissue for 
the DA TC and DR studies in brain and from frozen 
tissue for the PbTx TC study in brain, we have compared 
these results to determine if flash freezing tissue impacts 
the correlation of microarray and qPCR results (Fig. 6). 
Five genes were validated by identical qPCR assays in all 
three studies. These genes yielded a correlation of 0.807 
(Spearman’s Rho, p<0.0001, n=25) from fresh tissues and 
a correlation of 0.868 from frozen tissues (Spearman’s 
Rho, p<0.0001, n=15). The slight increase in correlation 
observed in frozen tissues was not statistically different 
from the correlation observed in fresh tissues (ANOVA, 
p=0.133, n=10). 
 
Limitations of validation by qPCR 
 
The genes most commonly selected for microarray 
validation are those exhibiting large degrees of change, 
which are those of biological interest because of their 
response to some challenge or change in condition. 
Given that it is not practical to confirm by qPCR the tens 
of thousands of genes spotted on an array, the current 
study provides insight into the limitations under which 
qPCR might be expected to agree well with expression 
data generated using inkjet printed 60-mer 
oligonucleotide arrays. Microarray data from the mouse 
brain DA dose response and time course experiments 
were initially screened for genes of interest, based upon 
their significant biological response and inclusion in a 
trend set requiring differential expression of at least 1.7 
fold in at least one time point and a composite p-value of 
0.0001 or less (22). Fourteen genes were selected for 
further analysis. Tubulin, alpha 4 was used to normalize 
the qPCR data set, because it exhibited no change from 
microarray data at all times and doses investigated. The 
normalized data yielded a correlation of 0.882 (Table 2, 
Spearman’s Rho, p<0.0001, n=45) for the time course and 
0.811 (data not shown, Spearman’s Rho, p<0.0001, n=30) 

for the dose response. However, in light of the range of 
correlations reported in the literature, we sought to 
determine how well these correlations represented the 
microarray results as a whole. Consequently, we selected 
13 additional genes that were excluded from the array 
trend analysis for verification by qPCR, including genes 
of interest given the known effects of DA that exhibited 
little change on the array as well as additional genes 
selected at random. Again, tubulin, alpha 4 was used to 
normalize the qPCR data set.  
 
When the combined set of 28 genes is considered, the 
correlation of the time course dropped to 0.686 
(Spearman’s Rho, p<0.0001, n=84) and the dose response 
to 0.676 (Spearman’s Rho, p<0.0001, n=58) (Table 1). The 
correlation of the data was severely negatively skewed 
following the addition of genes showing no significant 
change in expression or genes with poor p-values on the 
array. Table 2 shows an analysis of the 2 subsets of genes 
from the mouse brain DA time course. While the 
correlation between the array and qPCR results was 
0.882 (Spearman’s Rho, p<0.0001) for the differentially 
expressed genes initially considered, genes showing no 
significant change or genes with poor p-values on the 
array exhibited only 0.306 correlation (Spearman’s Rho, 
p=0.049). In general, similar trends were observed in both 
data sets, regardless of the biological interest of the 
included genes; correlations were higher among up-
regulated genes, genes exhibiting greater degrees of 
change, earlier Cts, and lower p-values. 
 
Summary 
 
In summary, this study demonstrates both the utility and 
the limitations of qPCR as a validation tool for 
oligonucleotide microarray studies. As both microarrays 
and qPCR have inherent pitfalls, the correlation of gene 
expression results between the two methods is 
influenced by data quality parameters, presented here as 
array p-values, and the amount of change in expression 
reported. Correlation between the two methods is 
affected by direction of regulation and qPCR Ct, but not 
spot intensity, the use of composite array data, or the use 
of frozen tissues. This analysis has determined a 
threshold of reliability based on fold change and p-value 
for the platform of Agilent inkjet printed 60-mer 
oligonucleotide microarrays and qPCR using SYBR 
green. Using this platform, genes exhibiting at least 1.4 
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fold change and a p-value of 0.0001 or less in microarray 
analyses consistently yielded significant correlations of at 
least 0.80 for array and qPCR data. Data below these 
thresholds need not be discarded, but rather, approached 
cautiously before time and resources are expended for 
further investigation. The pairing of microarray and 
qPCR is common in gene expression studies. However, 
the two methods require and utilize vastly different 
normalization procedures. While the current study did 
not address the issues of normalization, it has 
demonstrated that data from the two different 
technologies, if properly filtered, will yield comparable 
results. Here we used both qualitative (direction) and 
quantitative agreement between the two methods to 
define “validation.” Until a standard definition of 
validation of microarray results is established, data 
quality characteristics must be thoroughly presented in 

the literature to allow for individual assessment of the 
results. 

 
DISCLAIMER 

 
This publication does not constitute an endorsement of 
any commercial product or intend to be an opinion 
beyond scientific or other results obtained by the 
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publication furnished by NOAA, to any advertising or 
sales promotion which would indicate or imply that 
NOAA recommends or endorses any proprietary 
product mentioned herein, or which has as its purpose 
an interest to cause the advertised product to be used or 
purchased because of this publication. 
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TABLES AND FIGURES 
 

Table 1: Correlations of microarray and qPCR data. 

Data Set # Genes Verified Correlation p-value n 
Mouse brain DA TC 28 0.686 <0.0001 84 

Mouse brain DA DR 29 0.676 <0.0001 58 

Mouse blood DA TC 12 0.748 <0.0001 36 

Mouse brain PbTx TC 13 0.633 <0.0001 39 

Human AZA TC 20 0.727 <0.0001 60 

All Data Sets 68 0.708 <0.0001 277 

Five data sets were analyzed, both individually and combined to form a sixth large data set referred to as “all data.” The number of individual 
genes verified for each data set is shown as well as the resulting total number of data points used for the calculations of correlation (n). All 
correlations were calculated using Spearman’s Rho. DA, domoic acid; PbTx, brevetoxin; AZA, azaspiracid; TC, time course; DR, dose response. 

 

Table 2: Correlations of genes of included in microarray trend analysis versus genes excluded from microarray trend analysis. 

 Genes included in array trend analysis Genes excluded from array trend analysis 
Data Set Correlation p-value n Correlation p-value n 

All Primers 0.882 <0.0001 45 0.306 0.049 42 

Up-regulated on array 0.898 <0.0001 33 0.048 0.8278 23 

down-regulated on array -0.140 0.6641 12 -0.243 0.3155 19 

Fold Change ≥ ± 1.4 by array 0.893 <0.0001 28 ND ND 0 

Fold Change < ± 1.4 by array 0.586 0.0134 17 0.306 0.049 42 

Fold Change ≥ ± 1.4 by qPCR 0.893 <0.0001 25 0.562 0.0366 14 

Fold Change < ± 1.4 by qPCR 0.537 0.0147 20 -0.009 0.9629 28 

Ct > median 0.870 <0.00011 22 0.465 0.0339 21 

Ct < median 0.895 <0.0001 23 0.004 0.9866 21 

Log(Intensity) > median 0.843 <0.0001 22 -0.072 0.7557 21 

Log(Intensity) < median 0.934 <0.0001 23 0.443 0.0444 21 

p-value ≤ 0.0001 0.910 <0.0001 26 0.872 0.0539 5 

p-value > 0.0001 0.708 0.0007 19 0.180 0.2875 37 

Up or down-regulation conserved 80.00%*   36 76.19%*   32 

For verification of the mouse brain DA time course 14 genes included in the array trend set (≥1.7 fold change in at least one time point and a 
composite p-value ≤0.0001) determined to be of biological interest, given their known responses to DA or the degree of change exhibited by 
microarray, were selected for validation by qPCR. In addition, 13 genes of lesser confidence that were excluded from array trend analysis were 
verified by qPCR. Both data sets were normalized to tubulin, alpha 4. The effects of direction of regulation, degree of fold change, Ct value, spot 
intensity, and array p-value on correlation were examined. All correlations were calculated using Spearman’s Rho. *This value is the percentage 
of genes for which the direction of change was determined to be the same by both array and qPCR analyses. ND: no data (insufficient sample 
size, n≤2). 
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Fig. 1: Analysis of data correlation categorized by direction of regulation, spot intensity, and cycle threshold. Correlation of microarray and qPCR data as 
it relates to (A) direction of regulation, (B) Log (spot intensity), and (C) cycle threshold. Spot intensity data was binned by quartiles and thus, as the 
intensities from each experiment differed slightly, actual intensities are not indicated in the legend. Asterisks indicate a statistically significant 
correlation of array and qPCR data (p<0.05). The hatched bars represent the compilation of the five individual data sets, referred to as “all data.” 
Statistical differences of correlations, determined by ANOVA, are indicated by different letters. All correlations were calculated using Spearman’s Rho. 
The number of samples included in each correlation is shown in the base of the bar. ND, no data (insufficient sample size, n≤2); DA, domoic acid; PbTx, 
brevetoxin; AZA, azaspiracid; TC, time course; DR, dose response. 
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Fig. 2: Analysis of data correlation categorized by fold change. Correlation of microarray and qPCR data as it relates to (A) fold change measured by 
microarray and (B) fold change measured by qPCR. The combined data set of “all data” was queried first by microarray fold change (1.4 fold cut-off) and 
then by (C) spot intensity and (D) Ct values to determine the overall impact of fold change on array and qPCR data correlations. Asterisks indicate a 
statistically significant correlation (p<0.05). The hatched bars represent the compilation of the five individual data sets, referred to as “all data.” 
Statistical differences of correlations, determined by ANOVA, are indicated by different letters. All correlations were calculated using Spearman’s Rho. 
The number of samples included in each correlation is shown in at the base of the bar. ND, no data (insufficient sample size, n≤2); DA, domoic acid; 
PbTx, brevetoxin; AZA, azaspiracid; TC, time course; DR, dose response. 
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Fig. 3: Analysis of data correlation categorized by p-values from microarray analyses. (A) Correlation of microarray and qPCR data as it relates to 
microarray spot p-values. The combined data set of “all data” was analyzed by (B) spot intensity and (C) Ct values to determine the effect of p-values 
(0.0001 cutoff) on array and qPCR data correlation. P-values are based on calculations including signal strength, background values, spot morphology, 
fold change, variation between replicates, etc. Asterisks indicate a statistically significant result (p<0.05). The hatched bars represent the compilation of 
the five individual data sets, referred to as “all data.” Statistical differences of correlations, determined by ANOVA, are indicated by different letters. All 
correlations were calculated using Spearman’s Rho. The number of samples included in each correlation is shown in the base of the bar. ND, no data 
(insufficient sample size, n≤2); DA, domoic acid; PbTx, brevetoxin; AZA, azaspiracid; TC, time course; DR, dose response. 

 

 
Morey et al. - Microarray validation: factors influencing correlation between oligonucleotide microarrays and real-time PCR 
www.biologicalprocedures.com 



   
 
188

 
Fig. 4: Combined effects of array fold change and p-value on data correlation. Correlation of microarray and qPCR data as it relates to both array fold 
change and p-value. Analyses of the combined data set of “all data” indicate that fold change has the greatest impact on array and qPCR data 
correlation. However, array data quality, measured here as a p-value, is essential to predicting reliable data. Asterisks indicate a statistically significant 
correlation (p<0.05). All correlations were calculated using Spearman’s Rho. The number of samples included in each correlation is shown in the base of 
the bar. 

 

 
Fig. 5: Effects of composite array use on array and qPCR data correlation. Correlation of microarray and qPCR results based on data from individual 
animals versus the use of weighted averages from composite array data. While minor differences were observed depending on the data set used, one 
data set did not consistently yield higher correlations. It does not appear that the use of composite arrays appreciably influence the observed correlations 
with qPCR data. Asterisks indicate a statistically significant correlation (p<0.05). All correlations were calculated using Spearman’s Rho. Statistical 
differences of correlation, determined by Wilcoxon’s test, are indicated by different letters in the “all genes” data set. The number of samples included in 
each correlation is shown in the base of the bar. 
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Fig. 6: Correlation of microarray and qPCR data from fresh vs. frozen tissue. Correlation of microarray and qPCR results based on data from RNA 
extracted from fresh mouse brains in the DA TC and DR versus the use of RNA extracted from flash frozen brains in the PbTx TC. While minor differences 
were observed depending on the data set used, one data set did not consistently yield higher correlations. It does not appear that the use of frozen 
tissue, rather than fresh, appreciably influences the observed correlations with qPCR data. Asterisks indicate a statistically significant correlation 
(p<0.05). All correlations were calculated using Spearman’s Rho. Statistical differences of correlation, determined by ANOVA, are indicated by different 
letters in the “all genes” data set. The number of samples included in each correlation is shown in the base of the bar. 
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SUPPLEMENTAL INFORMATION 
 

Table 3: Genes selected for validation by qPCR from microarray analyses (supplemental table). 

Gene Name Accession # 
Bases 

Spanned 
Annealing 

Temperature Experiments* 
7-dehydrocholesterol reductase NM_001360 127-277 58°C 5 
Activator of heat shock 90kDa protein ATPase homolog 1 NM_012111 494-621 60°C 5 
Adrenomedullin NM_001124 40-148 55°C 5 
Aldolase C, fructose-biphosphate NM_005165 60-252 60°C 5 
Alpha tubulin-like NM_145042 686-848 62°C 5 
bHLH-PAS type transcription factor NXF NM_153553.1 388-578 58°C 1 & 2 
Calpain 10 NM_011796 844-1626 64°C 1 & 2 
Calponin 1 NM_009922 303-771 62°C 1 & 2 
CCAAT/enhancer binding protein, beta NM_009883 1174-1305 58°C 1 & 2 
CCAAT/enhancer binding protein, delta NM_007679 1278-1434 60°C 3 
CD52 antigen NM_013706 52-234 62°C 3 
c-FOS NM_010234 36-390 62°C 1, 2, 3, & 4 
Chemokine (C-X-C motif) receptor 4 NM_009911 158-288 58°C 4 
Cofilin 1 BB097704 55-273 58°C 3 
Cold inducible RNA binding protein NM_007705 221-349 58°C 1 & 2 
Cyclin G2 NM_004354 124-271 60°C 5 
Cytochrome P450, family 1, subfamily a, polypeptide 2 NM_009993 489-609 62°C 4 
Cytochrome P450, family 2, subfamily a, polypeptide 4 NM_009997 458-628 55°C 4 
Cytochrome P450, family 2, subfamily f, polypeptide 2 NM_007817 236-408 55°C 4 
Cytochrome P450, family 51, subfamily a, polypeptide 1 NM_000786 10-172 60°C 5 
DNA damage inducible transcript 4 NM_019058 365-499 60°C 5 
Dystrobrevin beta NM_007886 1496-1838 62°C 1 & 2 
Fatty acid desaturase 1 NM_013402 359-514 60°C 5 
FK506 binding protein 11 NM_024169 253-644 62°C 1 & 2 
G protein-coupled receptor 114 NM_153837 150-284 58°C 5 
G1p2, Isg15 ubiquitin-like modifier NM_015783 107-234 58°C 3 
Glucocorticoid induced gene 1 NM_133218 1236-1566 55°C 1 & 2 
Glutamate receptor, ionotropic, kainate 5 NM_008168 911-1769 62°C 1 & 2 
Glutamine Synthetase X16314.1 309-829 62°C 1 & 2 
Granzyme A NM_010370 187-475 62°C 3 
Growth arrest and DNA-damage-inducible 45 beta NM_008655 351-506 60°C 1, 2, & 3 
Growth arrest and DNA-damage-inducible 45 gamma NM_011817 225-348 55°C 1 & 2 
Growth Hormone NM_008117.2 347-447 58°C 1 
Intercellular adhesion molecule 2 NM_000873 85-207 60°C 5 
Interferon regulatory factor 7 AK079685 703-837 60°C 3 
Interleukin 21 receptor NM_021798 213-406 58°C 5 
Internexin neuronal intermediate filament protein NM_010563 1022-1281 55°C 1 & 2 
Jun dimerization protein 2 NM_130469 44-211 60°C 5 
Jun-B NM_008416 994-1214 62°C 1 & 2 
KRAB zinc finger protein KR18 XM_139814 108-206 60°C 4 
Mitogen-activated protein kinase kinase kinase 6 NM_016693 677-791 62°C 1, 2, & 4 
Neural Proliferation, differentiation and control gene 1 NM_008721 200-586 62°C 1 & 2 
Neurotransmitter transporter, creatine Slc6a8 NM_133987 2203-2499 60°C 1 & 2 
Neurotransmitter transporter, glycine Slc6a9 NM_008135 67-285 58°C 3 
Nuclear factor of kappa light chain gene enhancer in B-cells inhibitor, alpha NM_010907 292-467 58°C 1 & 2 
Nucleoporin 88kDa NM_002532 65-218 60°C 5 
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pEL98 protein D00208 231-341 60°C 3 
Peroxiredoxin 3 NM_007452 86-488 62°C 1 & 2 
Pigpen protein AK086587 529-722 60°C 1 & 2 
Placenta-specific 8 NM_139198 88-196 58°C 3 
Programmed cell death 10 NM_019745 508-791 58°C 1 & 2 
Prostaglandin-endoperoxide synthase 2 NM_011198 1231-1410 62°C 1 & 2 
RAB1 NM_008996 81-237 58°C 1 & 2 
RAB33A NM_004794 344-510 58°C 5 
S100 calcium binding protein A8 NM_013650 245-348 55°C 3 
S100 calcium binding protein A9 NM_009114 35-174 62°C 3 
Serum/glucocorticoid regulated kinase NM_011361 158-329 60°C 1, 2, & 4 
Spindle pole body component 24 homolog NM_182513 381-486 60°C 5 
Squalene epoxidase NM_003129 609-785 60°C 5 
SRY-box containing gene 2 NM_011443 633-756 55°C 4 
Thioredoxin 1 NM_011660 88-335 55°C 1 & 2 
Transcription factor 7-like 2 NM_030756 345-496 60°C 5 
Transformation related protein 53 inducible nuclear protein 1 NM_021897 236-416 58°C 4 
Tubulin, alpha 4 NM_009447 94-310 60°C 1, 2, 3, & 4 
Tumor necrosis factor (ligand) superfamily, member 13b NM_033622 661-1056 65°C 1 & 2 
Tumor protein p53 inducible nuclear protein 1 NM_033285 1883-2040 58°C 5 

UDP-glucuronic acid decarboxylase AK005536 570-706 58°C 4 

X-box binding protein 1 NM_005080 610-715 60°C 5 
Following microarray analyses, genes were chosen based on fold change and p-value for validation by qPCR. GenBank accession numbers are 
listed. *1: Mouse brain DA TC, 2: Mouse brain DA DR, 3: Mouse blood DA TC, 4: Mouse brain PbTx TC, 5: Human AZA TC. DA: domoic acid. 
PbTx: brevetoxin. AZA: azaspiracid. TC: time course. DR: dose response. 
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