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Abstract 

Due to the importance of using cost-effective methods for therapeutic purposes, the function of probiotics as safe 
microorganisms and the study of their relevant functional mechanisms have recently been in the spotlight. Find-
ing the mechanisms of attachment and stability and their beneficial effects on the immune system can be useful in 
identifying and increasing the therapeutic effects of probiotics. In this review, the functional mechanisms of probiotics 
were comprehensively investigated. Relevant articles were searched in scientific sources, documents, and databases, 
including PubMed, NCBI, Bactibace, OptiBac, and Bagel4. The most important functional mechanisms of probiotics 
and their effects on strengthening the epithelial barrier, competitive inhibition of pathogenic microorganisms, pro-
duction of antimicrobials, binding and interaction with the host, and regulatory effects on the immune system were 
discussed.

In this regard, the attachment of probiotics to the epithelium is very important because the prerequisite for their 
proper functioning is to establish a proper connection to the epithelium. Therefore, more attention should be paid to 
the binding effect of probiotics, including sortase A, a significant factor involved in the expression of sortase-depend-
ent proteins (SDP), on their surface as mediators of intestinal epithelial cell binding. In general, by investigating the 
functional mechanisms of probiotics, it was concluded that the mechanism by which probiotics regulate the immune 
system and adhesion capacity can directly and indirectly have preventive and therapeutic effects on a wide range of 
diseases. However, further study of these mechanisms requires extensive research on various aspects.
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Introduction
Probiotics have a variety of applications in different 
fields. Today, probiotics are used as a treatment and pre-
vention method in many diseases and disorders. Their 

preparation and application for the health of the host are 
evolving. The food industry has also focused on using 
probiotics in fermented dairy products following a time 
of safe use and gaining more knowledge about their posi-
tive impact on human health [1]. Tolerance of gastroin-
testinal conditions, mucosal adhesions, and deprivation 
of competition are the basic aspects of probiotic selec-
tion [2] The mechanisms by which probiotics work are 
unknown. The effect of probiotics on pathogenic micro-
organisms is related to several mechanisms, including 
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antimicrobial secretion, competitive adhesion to epithe-
lium and mucosa, reinforcement of intestinal epithelial 
barrier, and immune system regulatory impact [3].

Figure  1 shows major mechanisms of action for pro-
biotics. Results that are supported by evidence from 
human experiments and animal models show the thera-
peutic potential of probiotics against several diseases [4]. 
It should be noted that the probiotic effects of different 
strains are not the same. Therefore, the health benefits 
attributed to one strain, also in one species, may not nec-
essarily apply to another strain [5].

Enhanced Epithelial Barrier
The epithelium of the intestine is constantly changing in 
continuous interaction with the dynamic luminal. The 
protection of an organism against pathogens is depend-
ent on the defense mechanisms as well as intestinal bar-
rier function. The intestinal barrier defense includes the 
function of the mucosal layer, production of antimicro-
bial peptides, secretion of IgA, adhesion mechanism, 
binding of beneficial bacteria residing in the intestine 
to the epithelial layer, and the formation of an epithe-
lial binding complex [6]. When the epithelial barrier is 

Fig. 1  Major mechanisms of action for probiotics
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weakened, inflammatory reactions that may lead to intes-
tinal disorders can occur due to the penetration of intes-
tinal mucosa by bacterial antigens and food allergens [7]. 
The utilization of probiotics can restore intestinal barrier 
function. The mechanisms of probiotics that enhance 
intestinal barrier function have not been thoroughly 
investigated, but it has been suggested that increased 
expression of genes contributing to cell signaling [8] is 
one of the potential mechanisms for increasing intestinal 
integrity.

The regulatory effect of Lactobacillus strains on sev-
eral genes which encode binding proteins, such as Cad-
herin and βcatenin, has been observed in the T84 cell 
barrier model. Meanwhile, the phosphorylation of bind-
ing proteins and the frequency of the expression of pro-
tein kinase C delta (PKCδ) isoforms are greatly affected 
by the incubation of Lactobacillus strains with intestinal 
cells [9].

One of the roles of probiotics is repairing the epithe-
lial barriers following an injury. Escherichia coli Nissle 
EcN1917 prevents the mucosal barrier dysfunction 
caused by Enteropathogenic Escherichia coli and repairs 
T84 and Caco-2 mucosal cells. This influence is promoted 
by the binding proteins ZO-2 and PKC protein kinase 
expression, which regenerate the strong binding complex 
[10]. Two strains of Lactobacillus casei DN-114001 and 
VSL3 can maintain intestinal barrier function through 
similar mechanisms [11]. In addition, the Lactobacillus 
casei VSL3 strain protects the epithelial barrier, which is 
the most prominent feature of this Lactobacillus strain.

Moreover, the Lactobacillus strain has been reported 
to play a role in activating P38 signaling pathway and 
regulating extracellular kinases by increasing the expres-
sion of proteins with strong binding [12]. It should be 
noted that the relationship between different levels of 
proinflammatory cytokines and intestinal penetrabil-
ity depends on factors such as intestinal problems and 
disorders. Another function of probiotics is to protect 
and prevent epithelial damage caused by cytokines [13]. 
Apoptosis of intestinal epithelial cells as a consequence 
of the disruption of epithelial integrity and increased lev-
els of inflammatory cytokines are two main pathological 
factors in inflammatory bowel diseases. P40 and p75, two 
soluble proteins produced by Lactobacillus rhamnosus 
GG, promote IEC homeostasis. By controlling the sign-
aling pathways, P40 and p75 prevent cytokine-induced 
cell apoptosis in the intestinal epithelium of mice and 
humans [14]. They also modulate the expression of a 
proliferation-inducing ligand (APRIL) in the epithelium 
by transactivating the epidermal growth factor recep-
tor (EGFR). In the mouse IECs, this pathway decreases 
cytokine-induced apoptosis and promotes IgA develop-
ment. Another mechanism by which these two proteins 

stimulate the proliferation and viability of intestinal epi-
thelial cells is the stimulatory effects on the IEC for the 
production of heat shock proteins Hsp72 and Hsp25, 
which in turn play a vital role in protecting strong binding 
proteins. Using a phosphatidylinositol-3-kinase-depend-
ent (PIK3) mechanism, it also activates the Akt pathway. 
Meanwhile, P40 and P75 can prevent colitis and promote 
intestinal development. In addition, P40 and P75 pre-
vent the disruption of tight junctions by H2O2 through 
the protein kinase C (PKC)-dependent mechanism [15]. 
Table  1 shows some probiotics and their mechanism of 
action to enhance the epithelial barrier.

Increased Attachment to the Mucosa 
of the Intestine
Colonization is one of the main factors in the bacterial 
host interactions which occur following the bacterial 
adhesion to the host mucosa as a precondition [25].

Adhesion of probiotics to the intestinal mucosa is also 
necessary to regulate the immune system and antago-
nism against pathogens [26]. Consequently, adhesion is 
the main prerequisite for the selection of probiotic strains 
and is attributed to probiotic mechanisms. The surface 
determinants that communicate with IECs and mucosa 
are also present in LAB. A significant part of the mucosa 
consists of glycoprotein compound complexes secreted 
by the IECs, which have a vital role in preventing patho-
genic bacteria attachment to the epithelium [27].

This interaction suggests that there may be a correla-
tion between probiotic bacteria surface proteins and the 
pathogen’s competitive exclusion in the mucosa [28].

As discussed, several surface proteins of Lactobacil-
lus promote the mucosal adhesions and form a surface 
binding in bacterium with the mucosal layers of the host 
cell, in which proteins, polysaccharide compounds, and 
lipoteichoic fatty acids play an important role [29] .

Mucus-binding proteins (Mub) are the most intensively 
researched surface proteins produced by Lactobacillus 
reuteri [30]. In the Lactobacillus strains, surface-depend-
ent secretory proteins play a key role in mucosal adhe-
sion [31]. It has also been reported that Bifidobacterium 
animalis subsp. lactis and Bifidobacterium bifidum have 
surface proteins that have a role in interaction with 
human plasminogen or enterocytes.

Surface proteins have a role in bacterial colonization in 
the human intestine by degrading the extracellular matrix 
of cells or by facilitating close contact with the epithe-
lium [32]. Increased production of antimicrobial proteins 
such as alpha- and beta-defensins, catalysidins, type C 
lectins, and ribonucleases is the main host response to 
pathogenic bacterial invasion and serves as the host’s first 
line of chemical defense [33]. Enzymatic attacks on the 
cell wall structure or disruption of bacterial membranes 
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by the secreted peptides and antimicrobial proteins are 
another line of defense by host cells that kill pathogenic 
bacteria. Several enzymes which act as an anti-microbial 
peptide (AMPs) expressed by paneth cells attack bacterial 
membranes. Lysozyme hydrolyzes the glycosidic bond of 
cell wall peptidoglycans [34], and phospholipids of the 
bacterial membrane are hydrolyzed by the phospholipase 
A2 [35]. In lactic acid bacteria, microbial adhesion often 
involves passive forces such as electrostatic interactions, 
hydrophobic interactions, steric forces, lipoteichoic 
acid, and some structures such as external lectin-based 
phenomena.

Although different types of proteins associated with 
the pathogenic bacterial binding have been identified, all 
the factors that affect the adhesion of probiotics have not 
been investigated yet.

The functional importance of different components 
of the mucosal layer and the diverse interaction of the 
mucosal layer, epithelial cells, and microbiota such as 
probiotics with the innate and acquired immune systems 
must be identified and analyzed in further studies [36].

Competitive Inhibition of Pathogenic 
Microorganisms
The term “competitive exclusion” was first expressed in 
an experiment in which different species of bacteria com-
peted to bind to receptors in the intestinal tract, but one 
species of bacteria was more able to bind to the receptors 

than other species and thus prevented the binding of 
other species. Bacteria use mechanisms such as creating 
a competitive microecology, destroying other bacterial 
receptor sites, producing and secreting antimicrobials 
and selective metabolites, and reducing nutrients com-
petitively to eliminate the growth of other species. Bac-
terial adhesion potential to mucin by surface proteins 
contributes to the antagonistic function of probiotic spe-
cies against the adhesion of gastrointestinal pathogens 
[37]. Evidence shows that a broad spectrum of pathogens 
such as Salmonella, Escherichia coli, rotavirus, Listeria 
monocytogenes, and Helicobacter pylori are inhibited by 
bifidobacteria. Production of antimicrobial substances 
and stimulation of ICEs are two probiotic mechanisms to 
inhibit the adhesion of pathogens [38].

Competitive inhibition of intestinal bacteria focuses on 
the interactions between bacteria and host, the purpose 
of which is to fight for accessible nutrients and epithelial 
attachment sites. Bacteria can also adjust their ecosystem 
to achieve strategic superiority, making it unsuitable for 
the competitors’ lives. The development of antimicrobial 
metabolites like organic acids (lactic acid and acetic acid) 
is an instance of environmental change [39]. Data from 
in  vitro experiments on human or animal mucosa have 
shown the impact of lactic acid bacteria (LAB) on the 
competitive exclusion of pathogens. Lactabacillus rham-
nosus GG has special adhesion properties that prevent 
the colonization of Enterohemorrhagic Escherichia coli 

Table 1  Probiotic strains and their mechanism of action to enhance epithelial barrier

Strain Mechanism Ref.

Lactobacillus plantarum ZLP001 Encoding genes related to antioxidative capacity (ClpP, HslV, trxA, trxB, tpx, nox2, npr, aspB). [16]

Maintaining epithelial integrity and preventing Enterotoxigenic Escherichia coli (ETEC)-induced gut perme-
ability.

[6]

Bacillus amyloliquefaciens SC06 Increasing the intestinal epithelial cell barrier and immune function by improving intestinal mucosa struc-
ture, tight junctions, and activating the TLRs signaling pathway.

[17]

Escherichia coli Nissle 1917 Regulating the expression of tight junction proteins in the intestinal epithelial cells (IECs) (upregulation and 
redistribution of the tight junction proteins ZO-1, ZO-2, and claudin-14).

[18]

Lactobacillus acidophilus Bifido-
bacteria bifidum Bifidobacteria 
infantum

Modulating the gut microbiota and reducing colon cancer. Decreasing tumor incidence, multiplicity/count, 
and volume via enhanced TLR2-improved gut mucosa epithelial barrier integrity and suppression of apopto-
sis and inflammation.

[19]

Clostridium butyricum Attenuating bacteria-induced intestinal damage and increasing the expression level of muc-2 and ZO-1 in 
the intestine and intestinal epithelial cells.

[20]

Bifidobacterium infantis
Lactobacillus acidophilus

Protecting the intestinal barrier against IL-1β stimulation by normalizing the protein expression of occludin 
and claudin-1 and preventing IL-1β–induced NF-κB activation in Caco-2 cells, which may be partly responsi-
ble for the preservation of intestinal permeability.

[21]

Bacillus subtilis CW14 Treatment of Bacillus subtilis CW14 mitigates the tight junction injury by improving ZO-1 protein expression 
and reduced apoptosis s induced by ochratoxin A (OTA)

[22]

Protects the ZO-1 protein by activating the TLR signaling pathway and reduces OTA damage by down-regu-
lating the death receptor genes and up-regulating the DNA repair genes.

Bifidobacterium bifidum Strengthening of the intestinal epithelial tight junction prevents epithelial barrier disruption induced by 
TNF-α.

[23]

Lactobacillus rhamnosus GG Protects the intestinal mucosa of rats from pepsin-trypsin-digested gliadin (PTG)-induced damage by pre-
venting the reduction of the expression of the intercellular junction proteins.

[24]
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(EHEC) in the human intestinal cell line. The mechanism 
of binding to surface glycoproteins and glycolipids of 
IECs is used in pathogens such as EHEC using mannose-
sensitive type 1 fimbriae. The probiotic strains of Lacto-
bacillus and Bifidobacterium prevent pathogen binding 
to the IEC by binding to the same receptor sites [40].

Production of Beneficial Metabolites
A health-promoting mechanism in probiotics is the 
production of compounds with a molecular weight 
below 1000 Da, such as organic acids, as well as anti-
bacterial agents called bacteriocins, which have a 
molecular weight of more than 1000 Da [3]. Acetic and 
lactic acids as organic acids have a significant restrain-
ing effect on gram-negative bacteria and act against 
pathogenic bacteria as one of the antimicrobial com-
pounds of probiotics [41].

Inside the bacterial cytoplasm, the undecomposed 
form of organic acid binds to the bacterial cell and 
decomposes, resulting in a decrease in intracellular pH 
or intracellular build-up of ionized forms of organic acids 
that can induce the death of pathogens [42].

Small AMPs and bacteriocins are two of LAB’s impor-
tant antimicrobial peptides. Bacteriocins developed by 
gram-positive bacteria such as LAB include lactacin B 
produced by Lactobacillus acidophilus, plantaricin pro-
duced by Lactobacillus plantarum, and nisin produced 
by Lactobacillus lactis. However, a group of bacterioc-
ins acts against oral pathogens. Common mechanisms 
in bacteriocin function include target cell destruction 
by cavity development or cell wall synthesis inhibition 
in pathogens. It has also been demonstrated that Bifido-
bacterium has lethal functions against many pathogenic 

bacteria, including Escherichia coli C18455 and Salmo-
nella enterica typhimurium SL1344. Production of a low 
molecular weight lipophilic molecule is the cause of this 
action. In addition, an important compound identified 
to be effective against gram-negative bacteria is a low 
molecular weight protein called BIF, expressed by Bifido-
bacterium longum BL198. This protein hinders the E. coli 
binding to the epithelial cell line in human [43].

Some probiotics produce metabolites that have an 
inhibitory effect on fungi and other bacteria. Lactoba-
cillus can produce various antifungal agents such as 
mevalonolactone, benzoic acid, Short-chain fatty acids 
(SCFAs), and methylhydantoin. Lactobacillus coryni-
formis is also able to produce protein compounds with 
antifungal properties [44].

SCFAs such as acetic, propionic, and butyric acid are 
important bacterial metabolites of the intestine with cru-
cial functions in the host’s health. Several factors impact 
the concentration of SCFAs in the intestine, such as the 
population of intestinal bacteria, environmental effects, 
genetic factors, and diet. Based on the studies, there is an 
interaction between SCFAs and diseases such as inflam-
matory bowel disease (IBD), type 2 diabetes (T2D), obe-
sity, autoimmune disorders, and bacterial infections. 
Table 2 presents SCFAs produced by probiotics and their 
beneficial effects.

Probiotics and the Immune System
The first line of defense against pathogens is the innate 
immune system, although its ability to detect antigens 
is not specific. Several different types of cells make up 
the innate immune system, and these cells are the first 
cells to encounter and respond to pathogens and their 

Table 2  SCFAs produced by probiotics and their beneficial effects

Short-chain fatty acids Effect of SCFA Producing Bacteria Ref.

Lactic acids Maintaining intestinal and immune homeostasis
As a mediator in the microbiota–gut–brain axis crosstalk regulating pH,
Increasing the absorption of calcium, iron, magnesium,
Anti-inflammatory activity (inhibiting NFκB macrophages)
Inhibit the development of pathogenic microorganisms competing for 
colonization sites

Lactic acid bacteria (LAB)
Lactobacilli, Bifidobacteria, 
Enterococci, Streptococci, Eubac-
terium

[39, 45–48]

Acetic acid Key factor in the metabolism of carbohydrates and fats and synthesis of 
cholesterol
Maintaining intestinal and immune homeostasis

LAB,
Acetic acid bacteria (AAB),
Acetobacter spp.

[49, 50]

Propionic acid Inhibition of gluconeogenesis and cholesterol synthesis in the liver Maintain-
ing intestinal and immune homeostasis
Antibacterial and anti-inflammatory effects against pathogens

LAB
Propionic acid bacteria (PAB)
Propionibacterium

[51, 52]

Butyric acid Anti-inflammatory effect
Main source of energy for intestinal epithelial cells
Immunoregulatory effect on intestinal epithelial cells and other mucosal cell 
populations
Stimulating the expression of the MUC2 gene in cell lines. Production of 
mucin inhibiting tumor development and inducing the process of apoptosis

LAB, Bacteroidetes, Firmicutes [47, 53–57]
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metabolites [58]. Epithelial cells and dendritic cells (DCs) 
are the most common innate immune cells mentioned 
in studies on probiotics and their relationship with the 
immune system [38].

The main cells of the innate immune system are phago-
cytic cells such as macrophages, neutrophils, dendritic 
cells, monocytes, natural killer (NK) cells, and mast cells 
[39]. One study found that consuming yogurt fermented 
with Lactobacillus. bulgaricus OLL1073R-1 increased 
the activity of NK cells and reduced the risk of colds in 
the elderly [59]. Other studies have demonstrated that L. 
bulgaricus OLL1073R-1 and its secretory polysaccharides 
enhance the activity of the immune system, which in turn 
activates the NK cells. Therefore, prevention of respira-
tory infections caused by respiratory viruses or influenza 
is achieved by using L. bulgaricus OLL1073R-1 or its 
products [60, 61].

In another study of physically active individuals (uni-
versity athletes), Lactobacillus casei Shirota decreased 
the plasma antibody titers against cytomegalovirus and 
Epstein-Barr virus (EBV) [62]. However, there was no 
substantial difference between the group receiving Lacto-
bacillus casei shirota and the control groups in the occur-
rence of gastroenteritis by Norovirus in the long-stay 
elderly at a healthcare facility [63].

Although the possible mechanism of action of Lac-
tobacillus casei shirota is still debated, a study has 
reported that the function of NK cells, one of the first 
defense mechanisms against viral infections, is modu-
lated by Lactobacillus casei shirota [64]. The link between 
acquired and innate immune systems is created by DCs, 
macrophages, and monocytes, as they act professionally 
as antigen-presenting cells (APCs). Probiotics possess 
antiviral effects, while the NK cells have increased cyto-
toxic ability and phagocytosis of macrophages is grow-
ing. Through the secretion of tumor necrosis factor alpha 
(TNF alpha), components of the gram-positive bacterial 
cell wall, including lipoteichoic acid (LTA), can stimu-
late nitric oxide (NO) synthase as a mechanism of virus-
infected cell death by macrophages and also enhance the 
configuration of essential phagocytosis receptors like 
FcγRIII (CD16) and toll-like receptors (TLRs) [65, 66]. 
These cells are important in that they function to initiate 
acquired immune responses because primary T cells pro-
vide a response to APC-presented antigens and cytokines 
secreted in acquired immunity and differentiate par-
ticular subtypes of CD4 + T cells (Th1, Th2, or Th17 
cells) [67, 68]. Furthermore, for the acquired immune 
responses to be successful, the interactions between T 
cells and APC are critical [39].

The inhibitory impact of Lactobacillus rhamnosus GG 
on experimental rhinovirus infections has been assessed 
in healthy volunteers. Rhinovirus was inoculated 

intranasally to volunteers, followed by ingestion of L. 
rhamnosus GG for 6 months. The incidence and sever-
ity of cold symptoms and the number of individuals with 
rhinovirus infection were lower than those of the control 
group [69].

In another study, children with rotavirus-induced diar-
rhea who received LGG showed a significant increase 
in serum IgG immunoglobulin levels after the interven-
tion. Meanwhile, with LGG administration, a significant 
improvement in intestinal permeability was observed in 
children with cryptosporidium-induced diarrhea [70]. 
L. rhamnosus GG has also been suggested to modu-
late innate and adaptive immune responses, specifically 
against gastrointestinal pathogens, leading to increased 
serum IgG and secretory IgA levels targeting intestinal 
pathogens, including rotavirus [47]. A plausible pathway 
for host microorganisms to interact with the surface of 
the intestinal mucosa and gut-associated lymphoid tis-
sue (GALT) is a connection between IECs and bacteria 
and their metabolites. Moreover, IECs and APCs play 
a role in the innate immune system. The activity of IEC 
cells is regulated by commensal and probiotic bacteria, 
which enables IEC to affect the immune cells such as 
DCs, macrophages, and intra-peritoneal lymphocytes 
[71, 72]. NF - κβ activity in IEC cells has been reported 
to be inhibited by intestinal commensal bacteria in cases 
of Salmonella typhimurium and Salmonella pullorum. 
The mechanism of this inhibition is to inhibit the nuclear 
transfer of NF - κβ protein by inhibiting Ikβ-α ubiquit-
ination [73, 74]. This mechanism has also been shown to 
decrease the expression of inflammatory cytokines and 
their mediators, including IL8 [75]. IECs also can restrain 
the high load of common bacteria in the distal region of 
the human intestine [39].

Dendritic Cells (DCs) and Probiotics
DCs are primary cells that function as microbial ligand 
sensors by activating innate immune receptors (e.g. TLRs 
and C-type lectin receptors (CLRs)). The signaling path-
ways are activated by bacterially derived molecules per-
mitting changes in the phenotypes of DCs and secretion 
of cytokine, which can be underpinned by the integration 
of immune functions with microbial and host metabo-
lism. An important immune-regulating activity per-
formed in the intestinal DC is the metabolism of vitamin 
A to retinoic acid. Recent research has shown that some 
probiotics in the small intestine can induce this metabo-
lism in human and mouse DCs [76, 77].

In addition, it has been reported that in addition to 
vitamin A metabolism, the induction of another DC met-
abolic enzyme, heme oxygenase-1 (HO-1), is essential for 
the induction of mucosal T regulatory (Treg) cells within 
the mesenteric lymph nodes by Lactobacillus rhamnosus 
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[78]. In addition to metabolites, bacterial cell wall com-
ponents are also involved in the regulation of the immune 
system by DCs. The presentation of segmented filamen-
tous bacterial antigens by intestinal CD11cþ DCs, which 
is dependent on histocompatibility complex (MHC)-II, 
is essential for the induction of TH17 lymphocytes [79]. 
Moreover, a direct association between specific frag-
ments of Bacteroides fragilis, capsular polysaccharide A 
(PSA), and mouse plasmacytoid DCs through TLR2 has 
been demonstrated. Plasmacytoid dendritic cells have 
been shown to express proteins that protect the gut 
against colitis as well as IL-10 secretion by CD4þ cells 
after exposure to PSA [80].

An exopolysaccharide from Bacillus subtilis is associ-
ated with TLR4 and MyD88 signaling and protects the 
gut from inflammation induced by Citrobacter rodentium 
[81]. Dietary fiber fermentation in the colon, including 
prebiotics, results in the production of SCFAs [82]. The 
Pathogenesis of inflammatory colorectal cancer, obesity, 
bowel disease, allergies, and type II diabetes may lead to 
abnormal production of these metabolites owing to dys-
biosis and dietary issues [83]. Butyrate, acetate, and pro-
pionate are likely to be more effective in stimulating the 
immunomodulatory effects of all SCFAs [84]. Based on a 
recent study, butyrate, which helps induce IL10-secreting 
T cells and Treg cells, induces the regulatory activity of 
the DCs, which is mediated on colonic DCs and mac-
rophages by the G-protein-coupled receptor, Gpr109a 
[85, 86]. It has been shown that Butyrate induces IL23 
secretion by mouse DCs, which activates the TH17 
response under certain conditions and also increases 
mucosal histamine levels in patients with inflamma-
tory bowel disorder and intestinal syndrome [87]. It can 
reduce the secretion of proinflammatory chemokines and 
cytokines that are stimulated by TLR-stimulated DCs, 
albeit raising IL10 production [88].

Activation of histamine 2 receptor (H2R) on DCs was 
initiated by histamine exerting its effect, and the signal-
ing mechanism needed direct protein exchange by cAMP 
(Epac) and cyclic adenosine monophosphate (cAMP). 
Experiments on H2R-deficient mice have shown quick 
weight loss and raised Peyer’s patch cytokine secretion, 
being more intense by a histamine-secreting Lactobacil-
lus strain [89]. Microorganisms have different effects on 
the phenotype and function of DC. Certain bacteria stim-
ulate the immune system, while others stimulate tolerant 
reactions. What determines the impact of a particular 
bacterial strain on DC function has remained unknown 
so far. However, specific patterns or mosaics of micro-
bial-related ligands can affect the outcome of certain 
compositions of receptor-mediated cell-signaling path-
ways. Using probiotic-based therapy to regulate DC mat-
uration can modulate the immune response. Kwon et al. 

[90] reported that regulatory DC drives the generation 
of CD41 Foxp3+ Treg cells following the administration 
of combined probiotic strains in mice by expressing high 
levels of IL10, transforming growth factor, indoleamine 2, 
3-dioxygenase (IDO), and cyclooxygenase-2 (COX-2).

Tryptophan metabolites have an important role in the 
microbiota- intestinal -brain axis regulation in physiolog-
ical and pathological conditions. The intestinal microbi-
ota has an impact on controlling tryptophan metabolites. 
Therefore, modulating tryptophan metabolism by posi-
tively altering the microbiota with prebiotics or probiot-
ics may be an effective treatment. N′-Formylkynurenine 
is a mediator in tryptophan catabolism whose synthesis is 
catalyzed by IDO [91].

By depleting autoreactive T cells and inducing Treg cell 
responses, IDO-expressing DC contributes to the genera-
tion and maintenance of peripheral tolerance [92]. IDO 
activity is stimulated by the ability of certain microbes in 
addition to the expression of IL10 by DC, which may be 
necessary to develop tolerance and to generate a regula-
tory immune response. Perhaps significantly maintaining 
a non-clinically responsive condition following allergen 
exposure in atopic individuals is linked with elevated 
IL10 production and IDO activity [93]. However, after 
exposure to bacteria, several components of the immu-
noregulatory system contribute to the tolerogenic poten-
tial in DC. Recently, it has been shown that feeding mice 
with L. rhamnosus JB-1 leads to an improvement in DC 
activity and regulatory/tolerogenic phenotype in the 
mesenteric lymph nodes (MLN) [78].

Epithelial Cells and Probiotics
Epithelial cells are indisputably involved in nutrient 
uptake. One of the defensive barrier mechanisms is the 
synthesis and secretion of antimicrobial peptides like 
defensin and cathelicidin. Probiotic strains are involved 
in the differential regulation of defensin expression and 
protein secretion, which itself is affected by local inflam-
matory mediators [94–96].

Autophagy can be seen as an essential adaptive 
response to stress to promote cell viability, which is nec-
essary to maintain the epithelial barrier. In this regard, 
some Bifidobacteria have been recently identified in an 
intestinal cell line that facilitates autophagy [97].

It has now been shown that autophagy is essential for 
proper intestinal function, and its impairment is associ-
ated with loss of intestinal homeostasis. Gram-negative 
bacterial lipopolysaccharide is one of the leading causes 
of pathogenic autophagy leading to IEC cytotoxic-
ity. Chaobiun Han et  al. [98] reported that probiotic-
mediated autophagy could prevent this cytotoxicity and 
be used as a new mechanism to protect epithelial cells. 
It has been indicated that probiotics increase intestinal 
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mucin production by goblet cells, and mucin covers the 
gastrointestinal tract and acts as a major protective bar-
rier. In a recent study, p40 Lactobacillus GG was shown 
to transactivate epidermal growth factor receptors to 
stimulate mucin production [99]. In addition, local 
inflammatory reactions which can destroy the intestinal 
epithelial barrier are caused by strong responses of the 
epithelial cells to microbial ligands [100–102]. The effect 
of the chemokine response is not the same in every pro-
biotic strain, and on the other hand, the expression of 
certain chemokines can be increased or decreased by a 
single probiotic strain. To exemplify, Bifidobacterium 
bifidum PRL2010 increases CCL19 cytokine expression 
but inhibits CCL22 expression, which supports the idea 
that probiotics induce strain-specific chemokine-specific 
responses [103]. Moreover, secretion of proinflammatory 
mediators, production of antimicrobial peptides, and epi-
thelial barrier function can be modulated by their prebi-
otics or SCFAs [104, 105]. The adaptive immune system 
receives different signals from the innate immune cells 
to extend an adequately regulated lymphocyte response 
to bacterial and metabolic factors. Recent studies have 
indicated the role of probiotics and prebiotics on NKT 
cells, Tregs, effector T cells, and B cells [38]. A balance 
between immune tolerance and inflammation can regu-
late the crosstalk between the intestinal microbiota and 
innate and adaptive immune cells [106].

T Lymphocytes and Probiotics
It has been shown that there is an association between 
increased Tregs function and the positive impact of pro-
biotics, symbiotics, and prebiotics on illnesses like aller-
gies or colitis [67, 107]. Based on the results of various 
studies, probiotics may regulate the secretion of vital 
immune modulators, especially by innate immune cells 
like DCs, thereby causing specific regulation of T lym-
phocytes [108, 109]. Different strains of lactobacilli can 
have different regulatory effects on the immune system 
response. Different pathogen-associated molecular pat-
tern molecules (PAMPs) expressed by the lactobacilli 
strains can induce cytokine release regulation and will be 
recognized by the related pattern recognition receptors 
(PRR) on APCs. The bacterial-dependent cytokine set-
ting obtained will indicate an important signal for T cells, 
which ultimately determines the regulation of the follow-
ing T cell response.

Table  3 shows lactobacillus strains and their capa-
bility of inducing Th1, Th2, Th17, or T regulatory cell 
responses [110].

As a result, owing to their regulatory ability, probiot-
ics are facinating candidates for the treatment of many 
inflammatory diseases, including irritable bowel syn-
drome (IBS), allergies, and other immune-mediated 

diseases. Since particular probiotic bacteria may be asso-
ciated with various immunomodulatory properties, it 
may be possible to use the strain to enhance the therapy 
of Th-mediated intestinal pathologies or modulate the 
immune response if more detailed information is availa-
ble on the immunomodulatory effects of certain bacteria. 
Moreover, some probiotic bacteria, or their molecular 
components may be beneficial as vaccine adjuvants by 
inducing DCs to enhance type I T cell response, due to 
the reaction of DC-produced inflammatory cytokines 
to bacteria [123, 124]. Certain probiotics have been 
reported to increase the number or function of Tregs. 
Consumption of Bacillus infantis 35,624 brings about 
two distinct outcomes. In psoriasis patients with chronic 
fatigue syndrome, or patients with ulcerative colitis, this 
leads to a decrease in the level of serum proinflamma-
tory biomarkers such as C-reactive protein, which may 
be mediated by the number of Tregs. On the other hand, 
in healthy volunteers, it can increase the level of Foxp3þ, 
which is involved in regulating the immune response in 
peripheral blood lymphocytes [125].

Natural Killer T (NKT) Cells and Probiotics
Although CD1dþ epithelial cells act against intesti-
nal inflammation, NKT cells are the primary mediators 
of intestinal inflammation and bone-marrow-derived 
CD1dþ cells mediate the induction of pathogenic NKT 
cells [126]. It NKT cells have been suggested to be 
directly affected by the intestinal microbiome and acti-
vated by probiotic antigens [127, 128].

Childs et al. reported that the use of symbiotic sup-
plements, including xylo-oligosaccharide in combi-
nation with Bifidobacterium animalis, reduced the 

Table 3  Lactobacillus strains and their ability to regulate T cells

Strain Regulate T cells Ref.

L.casei DN-114001 IL12 Th1 [111]

L.paracasei Z11 [112]

L.acidophilus X37 [113]

L.salivarius A6 [114]

L.gasseri 19,992 [115]

L.johnsonii 33,200 [92]

L.reuteri (ATCC 23272) [116]

L.reuteri DSM 12246 IL12 Th2 [117]

L.reuteri 5289 [78]

L.plantarum DN-121 [118]

L.rhamnosus GG IL23 Th17 [119]

L.rhamnosus Lcr35 [120]

L.casei NIZO B255 IL10 Treg [121]

L.reuteri ASM20016 [122]
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expression of CD16/56 cell surface markers in NKT 
cells and IL-10 secretion in a healthy volunteer, while 
this symbiotic reduced CD19 expression in B cells. 
Besides, it can also decrease IL10 secretion in response 
to lipopolysaccharide in peripheral blood mononu-
clear cells [128]. The practical outcome of altered acti-
vation in NKT by the human microbiome has not yet 
been determined.

B Cells and Probiotics
The importance of B lymphocytes in humoral immune 
responses is evident through their secretion of anti-
gen-specific antibodies. B cells limit aggressive 
immune reactivity and regulate immune responses 
principally via IL10 in the experimental models of 
allergic inflammation, tolerance, and infection [129]. 
Microbiome modulation based on B cell was dem-
onstrated in mice deficient in IgA. Lundell et  al. also 
found another mechanism related to IgA concern-
ing intestinal microbiota maturation in mice [130]. 
Another research group has proposed the activation 
of naive B cells in the gut, which overlaps the human 
intestinal microbiota production, and the presence of a 
significant number of IgGþ and IgAþ B cells in the gut, 
which confirms the role of B cells as immunomodula-
tors [131]. Oral administration of Lactobacillus gasseri 
SBT2055 has been found to trigger IgA production and 
boost the number of IgAþ cells in the lamina propria 
and Peyer’s patches.

Simultaneous stimulation of B cells with B-cell acti-
vating factor and L. gasseri SBT2055 was found to 
increase the induction of IgA production.

The main group of antibodies found in the body’s 
secretory fluids such as saliva, mucus, and tears is 
salivary immunoglobulin A (SIgA). SIgA has a role in 
mucosal surface, including host defense against patho-
gens transmitted by the mucosa, which control the 
quantity and quality of commensal microbiota compo-
sition by the host [132]. In a human study, supplemen-
tation of B. animalis with xylooligosaccharide reduced 
the expression of CD19 in B cells, suggesting that 
immune system modulations are caused by correctly 
chosen probiotics, prebiotics, or a combination thereof. 
The results of research on the molecular mechanisms 
involved in immune cells show the important effect of 
SCFA. However, SCFAs are possibly one of many bacte-
rial products that affect the immune system [133].

If a potential combination of probiotics and prebi-
otics is needed for better prevention and treatment of 
immune disorders, it is recommended to characterize 
probiotics and metabolites which have an impact on 
the immune system [134].

Adhesion Mechanisms of Probiotics to Intestinal 
Mucosa and Stability
One of the significant features in selecting the type of 
probiotic bacteria is their ability to attach to the surface 
of the host gastrointestinal tract (GIT) [102]. The ability 
of probiotics to adhere to the surface of the gut can sub-
sequently lead to the colonization of these bacteria in the 
gut, modulate and improve the function of the immune 
system, and also reduce autoimmune problems. These 
bacteria also contribute to the intestinal defense barrier 
against harmful bacteria or pathogens by eliminating or 
reducing them and improving metabolic functions [135, 
136]. Probiotics act as a barrier by preventing the binding 
of pathogens and toxins to epithelial receptors. Further, 
in  vitro experiments on intestinal cell lines have been 
commonly used to assess the antagonistic effects of pro-
biotics on pathogens [137]. While the adherence ability of 
probiotics to the surface of the host intestine is not inher-
ently a health advantage, the binding of probiotics to the 
intestinal mucosa by competing with binding to the host 
cell attachment sites may play a protective role in enter-
opathogens [138]. In addition, the adherence potential of 
probiotic bacteria to the GIT increases the possibility of 
contact with the host intestine, transient colonization, 
and their retention time in the gut to exert their benefi-
cial effects [139].

This transient colonization, for instance, stimulates the 
local function of probiotic metabolites such as SCFAs as 
well as the effects of bacterial surface molecules on the 
immune system. These molecules function as ligands 
for the host intestinal epithelial receptors, resulting in 
the induction of signaling pathways. Moreover, prebiot-
ics such as oligosaccharides can increase the probiotics’ 
adhesion ability [140]. Lactobacillus and Bifidobacterium 
are the most important gram-positive lactic acid bacte-
ria that have common surface molecules such as surface 
layer proteins, Mub, and lipoteichoic acid, which have 
a crucial role in interacting with mucosal constituents 
[141, 142]. Intestinal surface bacterial adhesion can be 
initially induced by nonspecific contacts such as hydro-
phobic interactions, accompanied by the second phase 
of adhesion by specific cell wall constituents [143]. Sur-
face adhesive proteins, including MucBP and Mub [144], 
are mucus-binding proteins. In many bacteria, including 
pathogenic species such as Listeria monocytogenes [145], 
a wide range of these proteins can be identified. Mucus 
binding proteins have also been found in lactic acid bac-
teria separated from the human gastrointestinal tract. On 
the other hand, the pili or fimbriae are also involved in 
the binding [146]. Other surface proteins such as surface 
layer proteins and fibronectin-binding proteins can play 
a role in the adhesion of bacteria to the intestinal mucosa 
in addition to mucus-binding proteins [147]. Fibronectin, 
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a plasma-soluble glycoprotein, is found in the solid and 
insoluble form on cell surfaces and in the extracellular 
matrix. Therefore, fibronectin-binding proteins in both 
gram-negative and gram-positive bacteria can contribute 
to their binding to the intestine. The presence of these 
proteins in certain pathogens has been attributed to their 
pathogenicity, due to their ability to invade host epithelial 
cells [146]. The existence of fibronectin-binding proteins 
can also be beneficial for probiotics due to their improved 
ability to adhere to host cells. Surface layer proteins are 
extracellular paracrystalline proteins that cover the sur-
face of some pathogenic bacteria and are the cell wall 
structural components that increase their pathogenicity 
[148]. The distribution and type of the surface layer pro-
teins differ from one strain to another, but they tend to be 
important for the intestinal cell-probiotic bacteria adhe-
sion. In addition, surface layer proteins can interact with 
host intestinal receptors to induce immune responses 
and also act as a regulatory factor in the immune system 
in probiotic bacteria [149]. The cell wall in gram-positive 
bacteria is a vital cell component that affects the function 
and survival of the bacterium. The responsibilities of the 
cell wall include facilitating interaction with the environ-
ment, creating a barrier against osmotic pressure, and 
preserving the stability of the structure. The gram-pos-
itive bacterial cell wall contains a large set of molecular 
structures which promote such interactions [150]. Mean-
while, surface proteins are greatly involved in establishing 
bacterial connections with the environment. Sortases are 
a group of membrane-associated transpeptidase enzymes 
in gram-positive bacteria that are responsible for bind-
ing a large set of secretory proteins to the surface of these 
cells via the identification of a motif preserved in these 
proteins to bind to the cell wall of gram-positive bacte-
ria [151]. Sortase-dependent proteins (SDPs) play a key 
role in strengthening and improving the binding of pro-
biotic bacteria, especially Lactobacillus species, owing to 
the pivotal role of sortase in binding its substrate to the 
gram-positive bacterial cell wall and the significance of 
proper binding to epithelial cells in improving probiotic 
bacterial function [152]. The first detected sortase, the 
sortase class A, was isolated from Staphylococcus aureus 
in 1999 [153]. Other groups of sortase have been discov-
ered in the last decade. The name sortase is derived from 
its role in sorting the proteins passing through the secre-
tory pathway [154]. After identifying the sortase enzyme, 
they were widely studied and considered medicinal tar-
gets due to their role in binding cell wall pathogenic fac-
tors in pathogens [155]. These enzymes are also involved 
in the polymerization of pili units in bacteria, which is 
one of the key factors that bind bacteria to surfaces [156]. 
An important feature of bacterial cell lining is the display 
of various surface proteins on the peptidoglycan layer, 

where these proteins can play a role in intestinal adhe-
sion and pathogenicity [157]. Often, these surface pro-
teins are covalently bound to the peptidoglycan layer of 
bacterial cell walls by a family of transpeptidase enzymes 
[158]. Sortase has different classes, including A, B, C, D, 
E, and F. As a housekeeping protein, class A sortase has a 
role in the covalent binding of surface proteins with the 
LPXTG motif to the cell wall of bacteria in gram-pos-
itive bacteria [159]. Class B sortase bind iron-absorbing 
proteins to the cell wall and is involved in iron homeo-
stasis [160]. Class C sortase is involved in pili formation 
through polymerization of pili-forming units [161]. Class 
D sortase involves sporulation, and the function of F and 
E sortases, which are generally detected in actinobacte-
ria, remains unknown.

The Function of Sortase and SDPs in Probiotics
The gram-positive bacterial cell wall is a vital part of the 
cell that affects bacterial function and viability. The cell 
wall keeps the structure stable, creates a barrier against 
osmotic pressure, and facilitates environmental inter-
action. A variety of macromolecular structures that 
promote these interactions are present in the gram-pos-
itive bacterial cell wall. Teichoic acid, lipoteichoic acid, 
exopolysaccharide, enzymes, S-layer proteins, and other 
cell surface proteins are found in adhesions and pili-
like structures, and are specifically associated with host 
binding [162]. Pathogenic bacterial surface proteins like 
protein A in Staphylococcus aureus and internalin A in 
Listeria monocytogenes have an important role in their 
infection and pathogenicity [155, 163]. Instead, the sur-
face structures in probiotic bacteria have a key role in 
benefiting the host, which is placed on the surface of the 
bacteria during the surface display process. The surface 
display is a combination of two processes: protein target-
ing and protein binding to the extracellular membrane. 
Most proteins targeted for extracellular space travel 
through one of two pathways: the twin-arginine (Tat) 
pathway and the Sec pathway. The Sec pathway identifies 
unfolded proteins, which have a signal peptide in their 
N-terminal region, which contains a basic N domain, a 
hydrophobic H region, and a C domain that has a con-
served site for signal peptidase cleavage. The secreted 
proteins are either transported out of the cell or bonded 
to the cell wall depending on the amino acid sequence in 
their C-terminal region. Proteins that bind to the mem-
brane from the C-terminal region and are transported 
by the secretory pathway are in the lactobacilli group 
as a large part of membrane-bound proteins [164]. The 
Tat pathway, unlike the Sec pathway, transports folded 
proteins out of the cell [165]. This pathway, however, 
seems to be very unusual in lactic acid bacteria species. 
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Covalent bonds or non-covalent interactions further bind 
the targeted proteins to the cell surface.

LPXTG-containing proteins or sortase-dependent pro-
teins (SDPs) are a series of surface proteins that cova-
lently bind to cell wall peptidoglycans after passing the 
membrane through the Sec pathway. In their C-terminal 
region, these proteins have a sorting signal with amino 
acid sequences of leucine (L), proline (P), threonine (T), 
amino acid (X), and glycine (G), which attach to the cell 
wall through an immobilization mechanism mediated 
by sortase A. Cell wall-SDPs attachment is achieved suc-
cessfully not only by the role of the LPXTG motif but 
also by the presence of a signal peptide in the N-terminal 
domain and a positively charged tail and a hydrophobic 
region in the C-terminal domain. SDP is secreted by the 
signal peptide through the Sec pathway. The charged tail 
in the C-terminal region is required to bind the proteins 

covalently to the cell wall at the moment of leaving the 
cell. This temporary binding to the membrane by the 
C-terminal puts the sortase and its substrates in close 
proximity and embeds them in the membranes, allow-
ing the sortase to perform its transpeptidase activity. 
The transpeptidase mechanism of sortase is then per-
formed, which is essential for binding. The initial phase 
of the transpeptidase mechanism is the sortase substrate 
cleavage in the cleavage motif between threonine and 
glycine and the formation of the sortase-SDP complex. 
The nucleophilic acid attacks the resulting acyl- thioester 
bond formed between the two proteins, which eventually 
binds to the cell wall surface [150] (Fig. 2).

Members of the lactic acid bacterial group are known 
to be safe bacteria with health benefits. They have func-
tions like maintenance of epithelial barrier function, 
reduction of symptoms of irritable bowel syndrome, and 

Fig. 2  Sortase mechanism of action in binding SDPs to cell wall. A SDPs are distinguishable with The presence of an N-terminal signal peptide and 
a C-terminal LPXTG sorting signal, followed by hydrophobic and positively modified residues that facilitate membrane anchoring, distinguishes 
sortase substrates. B In a sequence of five processes, SDPs are linked to the cell wall;1. sec machinery recognizes the signal peptide on the SDPs 
and exports it to the cell’s exterior. 2: When sortase and the SDPs are in close proximity, sortase cleaves the SDP between the glycine and threonine 
residues with transpeptidase action.3 The sortase/SDP complex is dissociated by lipid II’s nucleophilic attachment and 4: Through contact with the 
pentapeptide cross bridge, it produces a lipid II intermediate.5: As part of regular cell wall construction, the sortase substrate is integrated into the 
cell wall
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competitive inhibition of pathogens [166]. In many cases, 
the mechanism of these effects is unclear, and various 
factors are influential, but the presence of sortase and 
SDPs in LAB strains is considered an important factor 
in the development of the molecular mechanism of host-
bacterial interactions. In addition, the mechanism of 
sortase in presenting the surface proteins to the cell wall 
is an interesting hypothesis in oral vaccine production 
using safe strains [167]. Genomic studies have shown that 
the presence of cell surface structures is responsible for 
the host-bacterial interactions. The role of different types 
of sortase in bacterial-host interaction makes it an attrac-
tive target for screening the genomes of various probiotic 
bacteria.

Studies have shown that a combination of two factors, 
the ability of SDP to bind to the intestinal surface and 
the modulation of the immune system by probiotics, can 
affect gastrointestinal conditions in the presence of path-
ogens [136, 168]. Recently, the role of sortase and SDPs 
has received attention beyond the range of pathogenic 
bacteria, and this enzyme is considered very important 
in the stabilization of surface proteins and the surface 
arrangement of cells in probiotic and non-probiotic bac-
teria. Studies have also used this mechanism of sortase to 
display antigens on the surface of lactic acid bacteria and 
other probiotic bacteria to develop safe oral vaccines. The 
idea that sortase can play a key role in bacterial physiol-
ogy, including bacterial-host interactions, requires its 
investigation in various lactic acid bacterial species using 
new high- throughput genomic analysis tools [169, 170]. 
It has been reported that SDPs play an important role in 
the proper binding of probiotics, especially Lactobacillus, 
to intestinal epithelial cells and improve their probiotic 
function due to the role of sortase in their attachment to 
the probiotic bacterial cell wall. Based on current stud-
ies, it can be hypothesized that sortase and its substrates 
have a key role in bacterial physiology. This has led other 
researchers to identify and isolate new strains of Lactoba-
cillus in their studies with different copies of sortase and 
its substrates, intending to find new strains with stronger 
probiotic properties.

Conclusion
Probiotics have a significant capacity for the prevention 
of infections or the treatment of various diseases. How-
ever, some health findings on the effectiveness of probi-
otics are not yet conclusive and require more scientific 
data. The mechanisms of action of probiotics on the 
host health discussed in this review include modification 
of intestinal microbiota, effective binding for competi-
tive inhibition of pathogenic microorganisms, boosting 
the intestinal epithelial barrier, and controlling the host 
immune system. However, further studies are needed 

to find other mechanisms of probiotic function. One of 
the mechanisms considered to be effective in bacterial-
host interactions is the sortase and SDPs. In general, two 
factors, the ability of SDPs to bind to receptors on the 
intestinal cell surface and the immune system stimula-
tion by probiotics, can affect gastrointestinal conditions 
when exposed to pathogens. Therefore, it is possible to 
predict the role of sortase and SDPs in the LAB to pro-
vide a proper binding to epithelial cells, to improve the 
functions of probiotic bacteria, to provide oral vaccines 
and drug delivery, etc. The mechanism of action of SDPs 
binding covalently to the cell wall is a successful strategy 
in surface display technology used by pathogenic gram-
positive bacteria to use their host. The probiotic and 
commensal bacteria also use this strategy to positively 
interact with the host.

Gastrointestinal probiotics have a key role in the host 
immune response, strengthening the immune system, 
and improving the host’s health. The immune system 
can be greatly affected by probiotics owing to the immu-
nogenic effects of probiotic bacteria and their ability to 
communicate with epithelial cells, DCs, lymphocytes, 
macrophages, and monocytes. Therefore, it may be useful 
to study the effects of probiotics on the immune system 
in combating and preventing many diseases. The right 
combination of probiotics and prebiotics has powerful 
effects on the immune system. Special attention has been 
paid to current data about molecular mechanisms under-
lying the impact of SCFA on immune cells. However, it 
might be useful to further study the bacterial strains and 
metabolites that affect immune function for the sake of 
the prevention and treatment of immune disorders and 
many diseases.
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