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Abstract

Background: For analysis of the tumor microenvironment in diffuse large B-cell lymphoma (DLBCL) tissue samples,
itis desirable to obtain information about counts and distribution of different macrophage subtypes. Until now,
macrophage counts are mostly inferred from gene expression analysis of whole tissue sections, providing only
indirect information. Direct analysis of immunohistochemically (IHC) fluorescence stained tissue samples is confronted
with several difficulties, e.g. high variability of shape and size of target macrophages and strongly inhomogeneous
intensity of staining. Consequently, application of commercial software is largely restricted to very rough analysis
modes, and most macrophage counts are still obtained by manual counting in microarrays or high power fields, thus
failing to represent the heterogeneity of tumor microenvironment adequately.

Methods: We describe a Rudin-Osher-Fatemi (ROF) filter based segmentation approach for whole tissue samples,
combining floating intensity thresholding and rule-based feature detection. Method is validated against manual
counts and compared with two commercial software kits (Tissue Studio 64, Definiens AG, and Halo, Indica Labs) and a
straightforward machine-learning approach in a set of 50 test images. Further, the novel method and both
commercial packages are applied to a set of 44 whole tissue sections. Outputs are compared with gene expression
data available for the same tissue samples. Finally, the ROF based method is applied to 44 expert-specified tumor
subregions for testing selection and subsampling strategies.

Results: Among all tested methods, the novel approach is best correlated with manual count (0.9297). Automated
detection of evaluation subregions proved to be fully reliable. Comparison with gene expression data obtained for the
same tissue samples reveals only moderate to low correlation levels. Subsampling within tumor subregions is possible
with results almost identical to full sampling. Mean macrophage size in tumor subregions is 152.5 & 111.3 um?.

Conclusions: ROF based approach is successfully applied to detection of IHC stained macrophages in DLBCL tissue
samples. The method competes well with existing commercial software kits. In difference to them, it is fully
automated, externally repeatable, independent on training data and completely documented. Comparison with gene
expression data indicates that image morphometry constitutes an independent source of information about
antibody-polarized macrophage occurence and distribution.
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Background

Diffuse large B-cell lymphoma (DLBCL), the most fre-
quent mature aggressive B-cell lymphoma in adults, is
characterized by very heterogeneous pathological, clini-
cal, and biological features [1]. Additionally to the neo-
plastic B-cells, cancerous tissue contains high numbers
of various subsets of T-cells, macrophages, mast cells
and stromal cells [1, 2]. The composition of this tumor
microenvironment has attracted considerable interest
since it turned out to affect the clinical outcome. Besides
of overall histological inspection, it has been largely inves-
tigated by molecular procedures as gene expression profil-
ing (GEP) [3, 4] as well as by morphometric image analysis
[5, 6]. Based on GEP results, two biologically and clinically
distinct molecular subtypes of DLBCL were identified,
namely activated B-cell-like subtype (ABC) and germinal
center B-cell-like subtype (GCB) [7, 8], the latter being
associated with a favorable prognosis. Prognostic effects
by different signatures of the tumor microenvironment
were also found by Lenz et al. [9]. In particular, a signa-
ture associated with increased overall survival included
components of the extracellular matrix and genes that are
characteristically expressed in cells from the monocytic
lineage.

An important component of tumor microenvironment
are infiltrating tumor-associated macrophages (TAMs).
As yet, the role of TAMs and their possible importance
for prognosis is a controversially discussed item. Although
TAMs have been associated with immunomodulation in
other tumor entities [10, 11], their functional role in the
DLBCL tumor microenvironment is still not fully defined
[12-15]. A typical marker used for its identification is
CD163. In the present study, besides of CD163, we use
CD14 as a further specific marker for monocytes and
macrophages. The choice of this particular marker pair
has been motivated by the intention of future testing
whether the ratio of CD14/CD163 could be used as a
prognostic factor for clinical outcome in DLBCL patients.

Until now, macrophage counts are either inferred from
GEP analysis of whole tissue sections or by manual count-
ing in immunohistochemically (IHC) fluorescence stained
tissue microarrays (TMA) or high-power fields (HPF)
[16, 17]. However, due to the heterogeneity of the tumor
microenvironment, counts within TMAs and HPFs can-
not be considered as representative. Consequently, mor-
phometric image analysis and related macrophage count-
ing should be performed for whole IHC stained tissue
slides instead of for small subareals.

For several reasons, fully automated counting of IHC
stained macrophages within tissue sections is still a dif-
ficult task [18-20]. First, the size and shape of the
macrophages are highly variable, thus largely impeding a
recognition by prior shape information. Second, the inten-
sity of the staining shows a large variation as well, even
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within a single tissue sample or for different parts of a
single macrophage. Third, we must deal with cropped
or squeezed cells as well as with macrophages located
outside the focal plane, appearing as defocused features
within the images. Further, as far as fluorescent-labeled
antibodies are used, we must cope with autofluorescence
of other structures, e.g. erythrocytes, in the tissue. For
these reasons, the most popular strategies for cell segmen-
tation [21], i.e. (fixed or adaptive) intensity thresholding
and elementary feature detection, as implemented in most
commercial software kits, will be confronted with serious
difficulties when applied to macrophage segmentation.

In the present study, therefore, we describe a novel
ROF filter based segmentation approach, which allows
for fully automated macrophage counting in whole tis-
sue sections, and avoids the above mentioned difficulties,
at least in part. More precisely, we will combine a strat-
egy of floating intensity thresholding with a rule-based
feature detection in single-channel images. The latter has
been suggested e.g. in Steiner et al. [22] for detection
of IHC stained leukocytes. Our method is deterministic,
fully automated, externally repeatable (no dependence on
training data) and — in difference to most commercial
software packages — completely documented. It will be
validated against manual macrophage counts in a set of 50
test images.

Further, our novel method will be compared with differ-
ent existing segmentation approaches. For the mentioned
test image set, we perform a comparison with the out-
put of two commercial cell segmentation software kits
(Tissue Studio 64, Definiens AG, Munich, Germany, and
Halo, Indica Labs, Corrales, New Mexico, USA) as well as
with a straightforward machine-learning approach (train-
ing and application of a region-based convolutional neural
network). Next, our method and both commercial pack-
ages will be applied to a set of 44 whole tissue sections,
and outputs will be compared with each other as well as
with GEP data available for the same tissue samples. In a
final step, the ROF based segmentation approach will be
applied to 44 expert-specified tumor subregions for test-
ing selection and subsampling strategies. To the best of the
authors’ knowledge, a comparative analysis of automated
macrophage segmentation approaches is being conducted
for the first time.

Methods

Preparation and staining of tissue samples

44 biopsy specimens of DLBCL were selected from the
files of the Lymph Node Registry Kiel based on avail-
ability of material. Core needle biopsies were excluded.
Formalin-fixed paraffin-embedded (FFPE) tissue was
sliced into 2 um thin slides and, additionally to a con-
ventional HE-staining, an immunohistochemical staining
was done with antibodies against CD14 (Clone EPR3653;
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Cell Marque, Rocklin, CA, USA; 1:10) and CD163 (Clone
10D6; Novocastra, Leica Biosystems, Wetzlar, Germany;
1:100). Briefly, after deparaffinization in xylene and rehy-
dration in alcohol, tissue sections were incubated for
3 min in citrate buffer (pH 6) within a pressure cooker.
The slides were washed in PBS and then incubated for
1 h with a mixture of the primary antibodies in antibody-
diluent (medac GmbH, Wedel, Germany). After incu-
bation with the primary antibodies, the sections were
washed in PBS and then incubated with a mixture of
the secondary fluorescent-labeled antibodies in PBS for
1h. As secondary antibodies, donkey anti rabbit Alexa
488 and donkey anti mouse Alexa 555 were used (both
from Invitrogen, Thermo Fisher Scientific, Waltham, MA,
USA; 1:100). After washing in PBS the slices were incu-
bated with DAPI (Invitrogen, Thermo Fisher Scientific,
Waltham, MA, USA; 1:5000) for 2 min, washed in PBS and
cover-slipped with mounting medium. Use of tissue was
in accordance with the guidelines of the internal review
board of the Medical Faculty of the Christian-Albrechts-
University Kiel, Germany (No. 447/10).

Image acquisition, selection of tumor subregions and ROls
Images were generated by Hamamatsu Nanozoomer 2.0
RS slide scanner (Hamamatsu Photonics, Ammersee, Ger-
many) with 20 x magnification. For every fluorescent
immunostained tissue slide, the whole tissue sample as
well as a tumor subregion were imaged, resulting in single
images for the Alexa 488, Alexa 555, and DAPI channel,
respectively, and an overlay picture of the channels. Raw
image data were saved in .ndpi format (single-channel
images) or .ndpis format (overlay image), respectively.
Pixel size is 0.45 um x 0.45 pum in all images.

In order to select a tumor subregion within a whole
tissue sample, the tumor area was defined and marked
by a pathologist by inspection of the HE-stained slice.
Subsequently, within the immunostained slice, a suitable
subregion of the tumor area not larger than 10 mm? has
been selected depending on tissue and staining quality
(no tissue artifacts, no scratches or folding in the tis-
sue, no overstaining) and captured. The position of the
selected tumor subregion has been marked within the raw
data by use of the software kit NDP.view 2 (Hamamatsu
Photonics, Ammersee, Germany), which is available as
freeware [23].

From 25 randomly selected tumor subregions, ROIs of
900 x 600 px (0.109 mm?) size for manual counting and
comparison of image analysis methods have been sin-
gled out (CD147/488 nm and CD163%/555 nm channels).
Note that the ROIs have been selected under the view-
point of reflecting the several difficulties of automated
macrophage recognition, see Fig. 1.

In order to prepare the scans for image analysis, raw data
were converted into uncompressed . tif format and, in
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the case of whole tissue samples and tumor subregions,
sliced into tiles of 1000 x 1000 px (0.202 mm?) size, using
the software package Image] with the extension ndpi-
tools [24]. Since all obtained images are monochrome,
they have been further converted from RGB into greyscale
mode using the modulus Iy, = | Iz | of the RGB vector
and finally saved in losslessly compressed .png format.
Thus we end up with 50 ROIs, 44 datasets for whole tis-
sue samples and 44 datasets for tumor subregions, each
comprising image data at three different immunostain-
ings. Note that the image acquisition as well as the tiling
resp. selection of the ROIs has been organized such that
no misalignment between the scans at the different wave-
lengths occurred.

Let us remark that a further staining with Pax5 (poly-
clonal; Santa Cruz Biotechnology, Heidelberg, Germany;
1:100) and donkey anti goat Alexa 647 (Invitrogen,
Thermo Fisher Scientific, Waltham, MA, USA; 1:100) has
been simultaneously performed and imaged but all related
information, as it is not concerned with macrophages, has
been completely excluded from the following analyses.

Fully automated ROF filter based segmentation

a) Method description. The described method originates
as a substantial further development of the approach pre-
sented in Bredies et al. [25], where IHC stained photore-
ceptor segmentation was performed with data-dependent
but fixed intensity thresholding and without application
of geometric rules for feature segmentation. Some of the
steps described below are visualized in Fig. 2.

After initialization of the parameters (Step 0), sub-
traction of a median-filtered version I from the orig-
inal image ¥ (Step 1), which results in a brightness-
normalized, unsharply masked image I® = max (/© —
IW,0), we apply the Rudin-Osher-Fatemi (ROF) filter
[26] (Step 2), ending up with [ ®), ROF filtering constitutes
a well-established standard procedure in image process-
ing, resulting in a sligthly coarsened, cartoon-like version
of the input image which, nevertheless, conserves the
original edge structure. The procedure allows for a sur-
prisingly efficient numerical realization [27], pp. 175 ff.
Steps 0 — 2 are analogous to the algorithm described in
Bredies et al. [25]. We refer to the appendix of this paper
for an outline of the mathematical background of the ROF
approach.

Next, we extract the evaluation subregion to which the
macrophage segmentation has to be applied (i.e., the part
of the image where tissue is present). For this purpose, we
apply Steps 1 and 2 to the DAPI image, which is avail-
able together with (%, From the obtained DAPI cartoon,
we generate a black-and-white mask I,,,; by masking all
pixels with intensity less than 10 at 8bit scale with black
and covering every remaining pixel with a white 31 x 31
px square centered at the given position (Step 3). In the
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Fig. 1 Six typical examples of single-channel ROls. Contrast enhanced by factor 2 in all images, scale bar 45 um.a — No. 11 (CD14%/488 nm). b —
No. 36 (CD163%/555 nm), same region as in a. ¢ — No. 01 (CD147/488 nm), tightly packed and squeezed macrophages. d — No. 28

(CD163%/555 nm), tightly packed and squeezed macrophages, many erythrocytes. @ — No. 12 (CD141/488 nm), weak contrast. f — No. 40
(CD163%/555 nm), defocused and weakly stained macrophages, strongly autofluorescent erythrocytes

case of application of the method to the ROIs, this step
is being skipped, and the evaluation subregion is assumed
to coincide with the ROI image as a whole. Note that, in
difference to the following step, the application of a fixed
threshold is possible due to the much more regular struc-
ture of the DAPI image. The threshold value has been
experimentally chosen.

In difference to [25], the cartoon I®® will be segmented
with a floating intensity threshold instead of a fixed one,
and features will be identified as macrophages by applica-
tion of a set of several geometrical rules. This subproce-
dure, which has been newly developed, will be described
in more detail. For the geometrical description of a feature
F, we employ the following variables: the size s(F) of the
feature itself, the size ¢(F) of the convex hull of the feature,
the ratio r(F) of the principal axes’ lengths of the small-
est ellipse covering the feature, the perimeter p; (F) of the
feature and the perimeter p; (F) of a circle with equal area
to the feature F. Further, we define the parameters s,,;;,

and $;,,x — minimal and maximal feature size (in px),
Cmin — minimal area excess of the convex hull (in per-
cent), 1,4 — maximal ratio of axes, and p,;,,, — maximal
excess of the feature perimeter p; when compared with
the perimeter of a circle with equal area p».

We start at the intensity threshold i, which will be given
as the mean intensity of I®, rounded to the next integer
value, and the feature mask I® (i) := I®). Using I,,,;, we
mask in I® (i) all pixels outside the obtained evaluation
subregion (Step 4). Now we perform the first segmentation
step by masking in I® (i) all pixels with intensity less than
i, subsequent labeling (Step 5) and inspecting the con-
nected features F;,j = 1, ..., N(i), in I® (i) (Step 6). Each
of the features F; will be classified by the following rules.

1) If $;uax < s(Fj) then do nothing, reserving the too
large feature for further analysis with incremented inten-
sity threshold (Step 7). 2) If s(Fj) < suin then neglect the
feature as too small and mask it in I® (i) (Step 8). 3) If
Smin < 8(Fj) < Smax then test whether the feature satisfies
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Fig. 2 Visualization of processing steps in ROF filter based segmentation. a — Original single-channel image (ROl No. 09, CD14+/488 nm), contrast
enhanced by factor 3, scale bar 45 um. b — Cartoon of a as result of Steps 1 and 2, contrast enhanced by factor 6. ¢ — Features to be examinated in
b after masking with initial threshold i = 3 (Steps 4 — 6). d — Feature classification in ¢ (Steps 7 — 9): saved by Rule 1 for further processing (yellow);
excluded by Rule 2 (red), Rule 3a (purple) or Rule 3b (pink); accepted as macrophages (green). Rule 3¢ caused no exclusions here. @ — Features to
be examinated in b after masking with incremented threshold i = 4 (white); pixels saved in d but masked now (grey) (Step 10). f — Feature
classification in e, color encoding as before. Rule 3¢ caused no exclusions again

all of the following three criteria: 3a) c(Fj)/s(F)) > 1+
Cmin/100 (the feature is not too round), 3b) r(F}) < ryax
(the feature is not too elongated), and 3c) p1(F))/p2(F) <
Pmax (the feature’s boundary is regular enough). If yes,
save the feature F; into the output mask I, interpreting
it as macrophage, and mask it in I® (). If at least one of
the three criteria fails then neglect the feature and mask it
in I® (i) as well (Steps 9 and 10).

As aresult of the classification, we end up with a masked
version I® (i) of the cartoon and (possibly) a set of fea-
tures to be interpreted as macrophages, written into the
output mask Iseg,,. Now the segmentation step is repeated
with incremented intensity threshold i = i + 1, fur-
ther application of masking to I®@G + 1) == I®3) (Step
11) and geometrical analysis of the remaining features.
Thus we repeat subsequent segmentation steps until the
maximal intensity is reached. The complete algorithm is
summarized in Fig. 3 again.

IA

b) Input, output and implementation. As input for the
method, a single-channel greyscale image is required.
In the case of whole tissue samples and tumor sub-
regions, the related greyscale DAPI image must be
provided as well. The output of the procedure are
three black-and-white masks. I,,,, the first one, con-
tains the evaluation subregion. Into Iegy, all detected
macrophages are plotted as white features which are,
as a consequence of the organization of the processing
steps, mutually disjoint, see Fig. 4c. Into the third mask
Icony, we plot all convex hulls conv (F) of the detected
macrophages F. All result images are of the same size
as the input image. Further, the method provides the
total area of the evaluated subregion marked in I,,,,
the number of features in Iyg, as macrophage count
and the total area marked in I, i.e. the cumulative
area of the convex hulls of the obtained features, as
macrophage area. We refer to the obtained count as to
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ALGORITHM 1 (Fully automated ROF filter based macrophage segmentation)

Step 0. Initialization of the parameters Smin, Smazy Cmin, Tmaz aNd Dmaz- ‘

|

Step 1. Unsharp masking and brightness normalization: from given single-channel image (%),

generate median filtered version I(!) and subtract it from I(©); result: 1(2).

|

’ Step 2. ROF filtering of I(?) with fixed internal parameters; result: I(). ‘

|

’ Step 3. Masking of the evaluation subregion using related DAPI image; output: I.yq. ‘

|

Step 4. Initialization of intensity threshold i := [mean (I®®)] and I®)(3) := I®). Using I.pa,
mask in I®)(7) all pixels outside the evaluation subregion.

!

Step 5. Outer loop (intensities). If 4 > 255 then save output Isegm and halt. Else, mask in 1(3)(2') all
pixels with intensity less than ¢; label in 1(3)(i) all connected features F1, ... , Fi); set j := 1.

|

’ Step 6. Inner loop (feature examination at fixed intensity). If j > N (i) then go to Step 11. ‘

|

’ Step 7. Test of Rule 1. If s(F}) > Syq. then go to Step 10. ‘

|

’ Step 8. Test of Rule 2. If s(F}) < Syin then mask Fj in 13 (i) and go to Step 10. ‘

|

Step 9. Test of Rules 3a—3c. If ¢(F})/s(F}) = 1 + Cmin/100 and 7(F;) < Tpag
and p1(F})/p2(F;) < Pmas then save F into output image Isegm. Mask Fj in I3 (5).

!

’ Step 10. Increment of j. Set j := j 4+ 1 and go to Step 6. ‘

|

’ Step 11. Increment of i. Set i:=i4 1, I® (i + 1) := I®)(4) and go to Step 5. ‘

Fig. 3 Flowchart of ROF filter based segmentation algorithm
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Fig. 4 Visualization of outputs of different segmentation methods. a — Original single-channel image (ROl No. 09, CD14% /488 nm), contrast
enhanced by factor 3, scale bar 45 um. b — Manual count within a; macrophages tagged with green squares. € — Output mask /segm of ROF filter
based segmentation (S1), (S2). d — Annotated image as output of software kit Tissue Studio (S3), contrast enhanced by factor 6, detected
macrophage area in red. @ — Annotated image as output of software kit Halo (S4), contrast enhanced by factor 3, detected macrophage area in red.
f — Annotated image as output of machine learning method Mask R-CNN (S5)

riess .81

method (S1) and to the obtained cumulative area as to
method (S2).

The algorithm has been implemented as a series of
MATLAB procedures. They have been tested on MAT-
LAB 9.4.0.813654 (R2018a) and require the MATLAB
Image Processing Toolbox [28, 29]. For the ROF filter-
ing in Step 2, the numerical method from [30] is applied.
The window size for the median filter (31x31 px) as well
as the internal parameters of the ROF filtering are being
fixed from the outset. The geometrical parameters from
Steps 7 — 9 must be initialized as well. For the analysis of
the ROIs, we used s,,;, = 140, S;ar = 800, Cin = 7.5,
T'max = 3 and pyax = 2. For the analysis of the whole tissue
samples and the tumor subregions, we set the parameters
to Syin = 160, Syux = 1500, cin = 7.5, rax = 3 and
Pmax = 2.5.

The parameter s,,;, has been set above 140 px in order
to exclude the misidentification of erythrocytes (with a
mean diameter of about 6 um and a corresponding mean

area of ca. 100 px) as (parts of) macrophages. The setting
of Syax is well in agreement with the mean macrophage
area reported in the “Results” section below. The values
of the parameters c,iy, "max and pyqx have been experi-
mentally found. No particular attempts for performance
tuning have been made.

Let us remark that dependency on proprietary software
can be completely removed, e.g., by reimplementation of
the ROF segmentation procedures in the freeware envi-
ronment OCTAVE [31].

¢) Availability and usage. We made the MATLAB
procedures publicly accessible (CCO 1.0 Universal Pub-
lic Domain Dedication or GNU General Public License
v3) at the Leipzig Health Atlas repository under the
address [32]. Execution assumes that a single image
set, consisting of three greyscale images representing
the CD147/488nm, CD163%/555nm and DAPI chan-
nels, as well as the procedures are stored in the MAT-
LAB working directory. Output images and logfile will
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be saved at the same location. To start the analysis, type
rof segm public step 00 masterfile, which
subsequently calls the other procedures, within the MAT-
LAB command window. You will be asked to enter
the image filenames and to confirm the parameter set-
tings. Progress of segmentation can be traced by dis-
play messages. Parameters are set by default to the
values used for the analysis of the whole tissue sam-
ples and the tumor subregions as described in the
subsection above. They can be changed within the
file rof segm public step 01 parameters.m.
Modification of the basic procedure in order to enforce
batch processing may be easily effected but is left to the
user as it depends strongly on the particular structure of
the dataset to be analyzed.

Other segmentation methods

a) Commercial software kits. We applied two commer-
cial software packages to the images. The first one is
Tissue Studio 64, v3.6.1 (Definiens AG, Munich, Ger-
many) [33]. In the case of the ROIs, single-channel images
(at 488 and 555nm) in .png format were separately
uploaded and analyzed. Magnification was defined using
the image metadata (20x magnification, pixel resolution
0.45 um/px), stained area was analyzed in “Marker Area
Detection” mode. The minimal feature size was set to 30
wum? in order to exclude fragments of macrophage protru-
sions from counting. Thresholds for IHC marker intensity
staining were manually adapted for each image (within
ranges from 10 to 23 for CD14"/488 nm and from 11 to
26 for CD1637 /555 nm channel on a 8bit scale). For the
analysis of the whole tissue samples, .ndpis files were
uploaded. In order to define the evaluation subregion, all
layers were used for tissue background separation. Instead
of using the auto-threshold function of the software kit,
homogeneity threshold was set on 0.2, brightness con-
trol was manually adapted within a range from 2 to 6,
tissue minimum size was set between 10 and 2000 xm?
depending on the tissue sample. Areas with overstaining,
scratches or folding were excluded by manual marking.
Then the CD14"/488 nm and CD163%/555 nm channels
have been analyzed independently from each other in
“Marker Area Detection” mode. Thresholds were manu-
ally set in ranges from 13 to 40 for CD14%/488 nm and
from 12 to 45 for CD1637/555 nm channel on a 8bit scale.
As output, the software provides the total area analyzed
and the areas bearing the respective stainings. Graphical
output is an annotated version of the original image with
marking of the detected area, see Fig. 4d. We refer to the
me thod as to (S3).

The other software kit is Halo, v2.1.1637.11 (Indica
Labs, Corrales, New Mexico, USA) [34]. Magnification
was set to 0.45 um/px, and “Area Quantification FL v1.2”
mode was applied. In the case of the ROIs, single-channel
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images (at 488 and 555nm) in .png format were sep-
arately uploaded and analyzed. For the analysis of the
whole tissue samples, .ndpi files were uploaded. Based
on simultaneous inspection of all layers, the evaluation
subregion has been marked manually, excluding at the
same time areas with apparent overstaining, scratches
or folding. Then the CD14"/488 and CD163"/555nm
channels have been analyzed independently from each
other. Again, thresholds for IHC marker intensity staining
were adapted manually for each image (within ranges
from 0.1 to 0.16 for CD147/488 nm and from 0.125 to
0.19 for CD163%/555 nm channel for the ROIs and from
0.021 to 0.097 for CD14" /488 nm and from 0.047 to 0.279
for CD163% /555 nm channel for the whole tissue samples on
a float scale). As output, the software provides the total
area analyzed and the stained areas. Graphical output is an
annotated version of the original image with marking of
the detected area, see Fig. 4e. We refer to the method as
to (S4).

b) Machine learning method (Mask R-CNN). Mask R-
CNN is a region-based convolutional neural network,
providing bounding boxes for candidate target objects
together with a binary mask for the objects themselves
[35]. It depends on two sets of greyscale images anno-
tated with bounding boxes for the contained features
of interest, which are used for training and validation,
respectively. In our case, the training set was built from
10 randomly selected ROIs (20 % of data available), and
the validation set consisted of further 5 randomly selected
ROIs (10% of data available), thus leaving 35 ROIs for
the application of the method. Selection and annotation
of training resp. validation features within the original
images was performed by assigning a centered 31 x 31 px
square subregion around every tag obtained by man-
ual counting (whose output is available as a mask) as
a valid training feature. Annotation was performed by
software package VGG Image Annotator [36]. Annotated
images were converted into backbone feature map of
size 32 x 32 x 2048 by standard convolutional neural
network ResNet-101 [37]. Based on the obtained train-
ing data, the remaining 35 ROIs (at 488 and 555nm,
70% of data available) were subjected to segmentation
with Mask R-CNN, using the implementation available
at [38]. Single-channel images were uploaded in .png
format. The output of the method is an annotated ver-
sion of the original image with bounding boxes for the
detected macrophages and a black-and-white mask of the
same size as the input image, into which all detected
macrophages have been plotted, see Fig. 4f. For count-
ing and area evaluation, features of size less than 140 px
were ignored. We refer to the obtained count as to method
(S5) and to the obtained cumulative area of macrophages,
as derived from the black-and-white mask, as to
method (S6).
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Mutual comparison of the segmentation methods

a) Manual count as reference basis. Within single channel
images of the ROIs (at CD14 /488 nm and CD163" /555 nm),
macrophage cells were marked with a 3 x 3 px cross and
manually counted (see Fig. 4b, wherein, for better visibility,
the cross-shaped detection marks have been replaced by
squares centered at the same pixel). Tags have been saved
into a black-and-white mask of equal size as the original
image. We refer to the manual count as to method (MC).

b) Method comparison by means of the ROIs. To the
ROI image set, segmentation methods (S1) — (S6) have
been applied and subsequently compared. For this com-
parison, the relative error turns out to be an inadequate
measure. Indeed, since manual counts range from 8 to 311
macrophages per RO, the relative error would vary from
0.32% to 12.5% per erroneously counted single feature,
thus considerably overweighing errors made within ROIs
with small macrophage numbers. Instead, we will use
the Pearson correlation coefficients between the meth-
ods’ outputs for the complete sample of ROIs. Since the
manual count as reference method gives no information
about the area of the tagged cells, this measure has the
further advantage to allow for an immediate comparison
of count or area information without the necessity of a
normalization of the latter.

For (S1) and (S5), we will further provide the percent-
age of manually counted macrophages which are exactly
matched by the output of the respective method. Due to
the reasons mentioned in the “Background” section, the
relation between a detected feature and a manually tagged
macrophage is to be considered as a matching not only in
the case if the marking cross falls inside the convex hull
of the detected feature. A matching is given nonetheless
if the tag and the convex hull of the feature are mutually
disjoint but visual inspection reveals that the convex hull
covers the marked macrophage at least partly.

¢) Method comparison by means of the whole samples. To
the whole samples, methods (S1) — (S4) have been applied
and subsequently compared. We provide first the Pear-
son correlation coefficients for the methods’ output for
the CD14/488 nm and CD163%/555 nm channels. Since,
however, the evaluation subregions as well as the overall
density of cells contained within them show consider-
able variation between the samples, the outputs will be
appropriately normalized and then compared again. As
normalizations for (S1), we calculate the denusity, which is
given as total macrophage count divided by area of eval-
uation subregion, cf. Step 3 of Algorithm 1 above, as well
as the cell percentage, which is given as total macrophage
count diveded by estimated total number of cell nuclei
within the evaluation subregion. The latter is obtained
from the cartoon of the DAPI channel by masking all pix-
els with intensity less than 10 and dividing the number
of the remaining pixels by 100. As normalizations for
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(S2) — (S4), we calculate the area percentages, which are
given as cumulative macrophage area divided by the area
of the corresponding evaluation subregion.

We consider a feature detected within the CD14%/
488 nm channel as double-stained if at least 20 % of the
area of its convex hull is covered by convex hulls of some
features detected within corresponding CD163%/555 nm
channel image. Note that the presence of a double staining
does not influence the detection of a feature by methods
(S1) — (S4) since the channels are analyzed independently
from each other. However, the more completely and uni-
formly a given macrophage is stained, the more probable
is the recognition of a possible double staining.

d) Analysis of tumor subregions. The tumor subregions
have been analyzed with method (S1) only. Here, we will
compare the full output with its 50 % and 25 % downsam-
pling, considering only one half or one quarter of the tiles
of the given tumor subregion dataset for evaluation. Fur-
ther, we provide a comparison with the outputs of (S1)
and (GE) for the corresponding whole tissue sample. The
analysis is repeated with the normalized outputs of (S1),
calculated as densities. All comparisons will be given in
terms of Pearson correlation. Moreover, the percentage
of double-stained features according to the above given
definition will be recorded. Finally, we characterize the
distribution of the feature sizes, which will be derived
from the analysis of the CD14" /488 nm channel. Frequen-
cies are obtained by counting up all features of a given size
and subpopulation over the outputs for all 44 datasets.

Comparison with gene expression data for the whole
samples

Digital-multiplexed gene expression (DMGE) profiling
was performed with the nCounter platform (NanoString,
Seattle, OR, USA), targeting the genes of interest by digi-
tally color-coded oligonucleotides. For a detailed descrip-
tion of the procedure, see [39, 40]. The data were further
processed and normalized by the following three steps.
First, we performed quality controls using the R package
NanoStringQCPro [41]. Here, four samples were flagged
and removed from subsequent analysis. Second, we added
a pseudo count and normalized the data by dividing
sample-wise through the geometric mean of the house-
keeper genes (B2M, MTMR14, PGK1, ABCF1, EIF2B4,
LDHA, CTCE, TBP, WDR55, POLR2B), and third, we
multiplied the data with a factor of 1000 to bring them on
a natural scale. We refer to the normalized gene expres-
sion values as to method (GE). Below, the normalized
counts will be compared with the outputs of image mor-
phometry in terms of Pearson correlation coefficients.

Summary of methods’ application
In Tables 1 and 2, we provide a summary of the properties
of the described macrophage counting approaches and
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Table 1 Summary of segmentation methods’ properties

(S1) (52) (S3) (S4) (S5) (S6)

Software type
proprietary . .
freeware extension of proprietary e .
freeware . .
Input
.png format . . . . . .
.ndpi(s) format ° .
Output
count ° .
area . . . .
annotated image ° . ° .
feature mask . . . .
logfile . .
Evaluation subregion
prescribed ° .
manual detection .
automated detection ° . (o)
Threshold adaptation
manually ° .
automated . . n/a n/a

Feature detection

none o °

rule-based . .

by training set . .
Abbreviations: (MC) — manual count, (S1) — automated macrophage count from

ROF filter based segmentation approach, (S2) — cumulative macrophage area from
ROF filter based segmentation approach, (S3) — cumulative macrophage area from
Tissue Studio software, (54) — cumulative macrophage area from Halo software,
(S5) — automated macrophage count from Mask R-CNN machine learning
approach, (S6) — cumulative macrophage area from Mask R-CNN machine learning
approach, (GE) — normalized gene expression values from nCounter platform

Table 2 Summary of methods’ application to image data
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the experiments performed with them. Note that, for the
whole tissue samples, comparison of results of (S1) — (S4)
is possible for 40 datasets, and of (S1) — (S4) and (GE) for
35 datasets while (S5) and (S6) have not been applied.

Results

Application to ROIs

a) Application of segmentation methods and its mutual
correlation. First, we present the results of the methods’
application to the ROIs. In Table 3, we describe the
parameters of the outputs (minimal/maximal value,
mean, median, standard deviation). Calculation comprises
all 50 ROIs for (MC), (S1) — (S4) and a subset of 35 ROIs
for (S5) — (S6) while the remaining 15 images have been
used for the generation of training and validation data.

Table 4 contains the survey of the Pearson correla-
tion coefficients between manual count (MC) and out-
put of methods (S1)— (S6). Again, the mutual correla-
tions between (MC), (S1) — (S4) have been calculated on
the base of the complete ROI dataset while correlations
involving (S5) and (S6) are calculated on the subset of
35 ROIs where the outputs of the latter were available.
Complete results of methods’ application to the ROIs are
provided in Additional file 1.

We observe that the ROF filter based segmentation
method (S1) shows the best correlation with the manual
count (MC), namely 0.9297. This correlation is slightly
better than (S3) and (S2) and clearly superior to (S4), (S5)
and (S6). The relative order of the correlations between
(S1) — (S4) is 0.9661 : 0.8901 : 0.6898.

b) Exact matching of manually counted macrophages. In
Table 5, we provide the analysis of exact feature match-
ings between (MC) — (S1) resp. (MC) — (S5). Here, the
total number of macrophages counted in (MC) is summed
up over all 50 ROIs for the comparison with (S1) (column
2) and over the 35 ROIs available for analysis with (S5)
(column 5).

Manual count (S1) (S2) (S3) (S4) (S5) (S6) (GE)

ROIs

# single-channel images at CD14"/488 nm analyzed 25 25 25 25 25 17 17 -

# single-channel images at CD163%/555 nm analyzed 25 25 25 25 25 18 18 -

DAPI channel used no no no no no no no -
Whole tissue samples

# single-channel datasets at CD14% /488 nm analyzed - 44 44 43 41 - — 37

# single-channel datasets at CD163%/555 nm analyzed - 44 44 43 41 - — 37

DAPI channel used - yes yes yes yes - - no
Tumor subregions

# single-channel datasets at CD14%/488 nm analyzed - 44 — - - — — -

# single-channel datasets at CD163%/555 nm analyzed - 44 - - - - - -

DAPI channel used -
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Table 3 Results of segmentation methods (ROIs)

Method (MC)  (S1)  (S2) (S3) (S4) (S5)  (S6)
Unit # # um? um? um? # wm?
Min. 8 22 1780.0 499.0 210.8 9 1406.0
Max. 311 204 199994 550573 349209 60 9686.2
Mean 1126 979 10083.2 179040 52915 33.7 55430
Median 75 785 8597.0 13608.0 2842.7 37 60144
St.dev. 833 472 48392 13420.7 65395 155 25689

Application to whole tissue samples

a) Mutual correlation between segmentation methods. For
the application of (S1) — (S4) to the whole tissue samples,
we compare first the obtained evaluation subregions in
terms of Pearson correlation coefficients, see Table 6. For (S1),
we include the estimated number of cell nuclei as well.

In Table 7, we show the Pearson correlation coeffi-
cients between the outputs of methods (S1) — (S4) and
the gene expression data (GE) for the CD14"/488 nm
and CD1637/555nm channels, respectively. In Table 8,
we repeat the survey with the normalized outputs of
(S1) — (S4). Calculations comprise 40 datasets for the
mutual correlations between (S1) — (S4) and 35 datasets
for correlations involving (GE).

Macrophage densities, as observed by (S1) in all 44
datasets, range from 353.6 to 1374.6 cells/mm? with a
mean of 847.9 & 269.3 cells/mm? for the CD14% /488 nm
channel, and from 325.7 to 1715.4 cells/mm? with a mean
of 833.9 4 328.2 cells/mm? for the CD163*/555 nm chan-
nel. Macrophage cell percentages resulting from (S1) range
from 2.42 % to 11.29 % with a mean of 5.56 +2.05 % for the
CD14" /488 nm channel, and from 2.23 % to 10.87 % with
a mean of 5.47 & 2.35 % for the CD163"/555 nm channel.
Complete results of methods’ application to whole tissue
samples are provided in Additional file 2.

The relative order of correlations between (S1) — (S4) is
0.9909 : 0.7424 : 0.7181 and 0.9803 : 0.8415 : 0.7675 in
Table 7, and 0.9660 : 0.7972 : 0.4880 and 0.9606 : 0.7964 :
0.7765 in Table 8.

b) Correlation with gene expression data. In Tables 7
and 8, (GE) is correlated with the output of (S1) with

Table 4 Correlation between segmentation methods (ROIs)

(MQ) (S1) (S2) (S3) (54) (S5) (S6)

MO — 09297 08944 09077 06201 02864 03195
(S1) 00000 — 09661 0.8901 06898 03533 03877
(S2)  0.0000 00000 — 0.8999 0.7050 04972 05282
(S3)  0.0000 0.0000 00000 — 07719 03369 0.3741
(54 0.0000 0.0000 00000 00000 -— 03233 0.3532
(S5)  0.0953 0.0373 00024 00478 00581 — 0.9985
(S6)  0.0614 0.0214 00011 00268 00374 00000 —

p-values below the diagonal
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coefficients of 0.3261, 0.6380, 0.5961 and 0.7354, respec-
tively. For Table 7, column 4, this is the best value, while
in Table 7, column 9, and Table 8, methods (S3), (S2)
and (S2) are slightly better correlated with coefficients of
0.7099, 0.6184 and 0.7924, respectively. Otherwise, corre-
lation between (GE) and the commercial software kits (S3)
and (S4) is rather poor.

¢) Double-stained features. In the output of (S1), we
observed considerable numbers of double-stained fea-
tures. Percentages range from 25.72% to 77.68% of
the detected CD14-positive macrophages within a single
dataset bearing CD163-positive staining as well. In the
mean, 55.51 % of the macrophages per dataset detected by
(S1) were double-stained.

Application to tumor subregions

a) Results of subsampling. In Table 9, we show the Pearson
correlation coefficients between the output of methods
(S1) and (GE) for the whole tissue samples and the output
of (S1) for the respective tumor subregions selected within
them, subjected to 100 %, 50 % and 25 % sampling rate.
In Table 10, we repeat the analysis with the macrophage
densities instead of the counts. Calculations comprise 44
datasets for the mutual comparisons of (S1) and 37 datasets
for the comparison with (GE). Note that the correlations
between (S1) and (GE) in Tables 9 and 10 differ slightly from
those in Tables 7 and 8 because of additional data involved
in the calculation of the latter (37 instead of 35 datasets).

Macrophage densities, as observed by (S1) in all
44 fully evaluated datasets, range from 463.3 to
1574.9 cells/mm? with a mean of 907.7 & 325.3 cells/
mm? for the CD14% /488 nm channel, and from 371.3 to
1758.9 cells/mm? with a mean of 836.9 # 376.9 cells /mm?
for the CD163%/555nm channel. Macrophage cell per-
centages resulting from (S1) range from 2.17 % to 13.99 %
with a mean of 593 + 2.62% for the CD14"/488 nm
channel, and from 1.98% to 14.36% with a mean of
5.46 & 2.82 % for the CD1631/555 nm channel.

Complete results of application of (S1) to tumor subre-
gions are provided in Additional file 3.

b) Double-stained features. As to expect from our obser-
vations for the whole tissue samples above, double-stained
features are fairly common in the output of (S1). Percent-
ages range from 25.37% to 75.95% per fully evaluated
dataset, with a mean percentage of 53.41 %.

¢) Distribution of feature sizes. Within the counts of
features and convex hulls of features, we distinguish sub-
populations with or without double staining. The proper-
ties of the obtained distributions (minimal/maximal value,
mean, median, standard deviation, 95 % quantil) are sum-
marized in Table 11. All feature sizes are given in px. The
minimal feature sizes result from the choice of parame-
ters Suin = 160 and ¢, = 7.5, the maximal feature
sizes in columns 2 — 4 reflect the setting of the parameter
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Table 5 Exact matches between (MC) — (S1) and (MC) — (S5) (ROIs)

Method (MQ) Q) (MQ) — (1) (MQ) (S5) (MQ) — (S5)
macrophages features exact matches macrophages features exact matches

total number (#) 5632 4894 3724 4194 1180 1101
Percentages related to (MC)

total (all 50 resp. 35 ROIs) 100.0 86.9 66.1 100.0 28.1 26.2
Percentages related to (S1) resp. (S5)

total (all 50 resp. 35 ROIs) 100.0 76.1 100.0 933

Min. 20.8 333

Max. 975 100.0

Mean 71.0 91.7

Median 772 94.6

Stdev. 193 123

Smax = 1500. Figure 5 shows the histogram of the feature
sizes.

From Table 11, we observe a mean macrophage size
of 152.5 + 111.3 um?. For the single-stained subpopula-
tion, the mean size is 133.6 = 101.5 um?, slightly differing
from the double-stained subpopulation with a mean size
of 167.9 £+ 116.5 um?.

Discussion

e Our results show that the ROF filter based segmen-
tation method (S1) may be considered as fairly reliable
and well-comparable with with other existing methods.
Besides of showing the best correlation with the manual
count (MC), the mean and median of (S1) and (MC) are
closely related. Further, we see that the automated deter-
mination of evaluation subregions in (S1)/(S2) based on
DAPI channel information is fully reliable. The relative
order of correlations between (S1) — (S4) is comparable
for the applications to ROIs and whole tissue samples.
Our results further indicate that the different normaliza-
tions of (S1) (density and cell percentage) contain different
information and must be indeed distinguished. As to
expect, the percentage of exact matches between the fea-
tures detected by (S1) and manually counted macrophages

Table 6 Correlation of normalization bases (whole tissue
samples)

(S1)/(52) (SN/(82) (S3) (S4)

eval. area est. # nuclei eval. area eval. area
(SN/(52) - 0.9418 0.9305 09314
eval. area
(S1)/(52) 0.0000 - 0.7930 0.7886
est. # nuclei
(S3) 0.0000 0.0000 - 0.9974
(S4) 0.0000 0.0000 0.0000 —

p-values below the diagonal

is lower than in situations where more regular shaped and
uniformly stained cells are targeted. In view of the difficul-
ties described in the “Background” section, the absolute
and relative percentages of 66.1% and 76.1 % of exactly
matched macrophages, respectively, although moderately
underestimating the absolute number of macrophages, are
still fairly large. For large numbers of macrophages, cell
counts by (S1) and area determination by (S2) turn out to
be largely equivalent.

Of course, within the outputs of method (S1), one may
observe the typical errors in automated cell counting,
which would be avoided by a human examiner (cf. [25],
p. 11, Fig. 4). While, on the one hand, tightly packed and
uniformly stained macrophages may be lumped into a sin-
gle feature, nonuniform staining of single macrophages
may cause, on the other hand, a “breaking” of the cell
image, resulting in a double or multiple count. For the
same reason, many macrophages will be recognized only
partly, thus be properly counted but inaccurately masked.
The setting of the parameter s,,,, may exclude large sin-
gle macrophages or aggregates of squeezed macrophages
from counting. Background structures may be misidenti-
fied as macrophages as well.

Nevertheless, method (S1) shows considerable robust-
ness when dealing with scratches, folds, overstainings or
splatters of staining liquid (which were excluded when
selecting ROIs and tumor subsections but are present in
the whole tissue samples). In Fig. 6, some typical examples
are shown.

For the obtained cell counts, no stereological correc-
tions [42] have been applied since the mean size of target
macrophages largely exceeds the thickness of tissue slides.

e The application of commercial software kits to
macrophage segmentation is confronted with serious dif-
ficulties. The above described selection of the analy-
sis modes and parameters has been performed to the
best of the authors’ experience. In particular, due to the
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Table 7 Methods’ correlation (whole tissue samples)
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CD14%/488 nm channel

CD163%/555 nm channel

(S1) (52) (S3) (54) (GE) (S1) (52) (S3) (54) (GE)
(S1) - 0.9909 0.7424 0.7181 0.3261 - 0.9803 0.8415 0.7675 0.6380
(52) 0.0000 - 0.7367 0.7257 0.3020 0.0000 - 0.8589 0.7755 06257
(S3) 0.0000 0.0000 — 0.5959 0.2700 0.0000 0.0000 — 0.7288 0.7099
(54) 0.0000 0.0000 0.0000 — 0.2545 0.0000 0.0000 0.0000 — 0.5821
(GB) 0.0559 0.0778 0.1168 0.1402 - 0.0000 0.0000 0.0000 0.0002 -

p-values below the diagonal

heterogeneity of the data, the use of fixed thresholds
turned out to be inappropriate. For the same reasons,
we refrained from the application of cell counting modes
with prior nucleus detection (based on synchronous DAPI
staining of the samples) and subsequent colocalization
of stained area around the nuclei. As a consequence, we
must restrict ourselves to detection modes analyzing the
stained area in single-channel fluorescence images, and
the necessity of repeated manual interventions for param-
eter adaptation had to be accepted. Even under these
preconditions, both software packages cope very poorly
with artifacts in tissue preservation (typical examples are
shown in Fig. 6). For the analysis of whole tissue sam-
ples Nos. 23 and 35, both suffering from overstaining and
widespread presence of erythrocytes, application of (S4)
(in the above described analysis mode) failed at all.

Let us further remark that our results reveal a consid-
erable disagreement between the outputs of both com-
mercial software kits with a correlation of 0.7719 for the
ROIs and correlations ranging from 0.4077 to 0.7612 for
the whole tissue samples.

Compared with the commercial software kits applied
in this study, the ROF filter based segmentation method
has the advantages of full automatization, complete docu-
mentation of the algorithm and exact repeatability. Tissue
preservation artifacts are handled in a much more robust

way. Moreover, shapes, sizes, positions and colocalization
of macrophages can be observed from the method’s
output.

e Straightforward application of the Mask R-CNN
machine learning approach (S5)/(S6) leaded to very poor
results in terms of correlation with (MC) as well as
of the absolute percentage of exact matches between
(MC) and (S5). The relative percentage of artifacts
(6.7 %) generated by (S5), however, is considerably lower
than in (S1). Nevertheless, although we used the com-
mon ratio of 20%:10%:70% between training, valida-
tion and analysis data, it is obvious that the appli-
cation of the neural network suffered from a strong
deficiency of training items. As a consequence, we
refrained from an application of (S5)/(S6) to whole tissue
samples.

The window size for the training items has been selected
in agreement with the mean macrophage area observed in
Table 11.

e For the whole tissue samples as well as for the tumor
subregions, correlation coefficients for the CD163 staining
are slightly larger than for CD14 staining for all surveyed
methods. This observation may be explained by the fact
that the CD14 staining appears weaker than the CD163
staining. In general, such differences depend on the dis-
tribution of the epitop on the cell surface and the binding

Table 8 Methods’ correlation (whole tissue samples), normalized outputs

CD14%/488 nm channel

CD163%/555 nm channel

(S1) (S1) (S2) (S3) (S4) (GE) (SN (SN (S2) (S3) (S4) (GE)

density cell perc. areaperc. areaperc. area perc. density cell perc. areaperc. areaperc. area perc.
(S1) density  — 0.8150 0.9660 0.7972 0.4880 0591 — 0.8616 0.9606 0.7964 0.7765 0.7354
(S1) cell perc.  0.0000 — 0.7634 0.5809 0.4360 05543 00000 — 0.7873 0.6460 06732 0.6970
(S2) 0.0000  0.0000 — 0.8247 05772 06184 0.0000  0.0000 - 0.8548 0.8228 0.7924
(S3) 0.0000  0.0001 0.0000 - 04077 03139 0.0000  0.0000 0.0000 = 0.7612 0.6713
(54) 0.0014  0.0049 0.0001 0.0090 - 03204 0.0000  0.0000 0.0000 0.0000 - 0.6384
(GE) 0.0002  0.0005 0.0001 0.0663 0.0606 - 0.0000  0.0000 0.0000 0.0000 0.0000 -

p-values below the diagonal
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Table 9 Correlations under subsampling (whole tissue samples and tumor subregions)

CD147/488 nm channel

CD163%/555 nm channel

(S1) (GE) (S1) (S1) (S1) (SN (GE) (S1) SN (S1)
whole whole TS TS TS whole whole TS TS TS
100% 50% 25% 100% 50% 25%

(S1), whole — 0.3306 0.6550 0.6572 0.6535 — 0.6308 0.6749 0.6733 0.6735
(GE), whole 0.0457 — 04425 04434 04310 0.0000 - 0.5767 0.5745 0.5684
(S1), TS, 100 % 0.0000 0.0061 - 0.9994 0.9985 0.0000 0.0002 - 0.9996 0.9987
(S1), TS, 50% 0.0000 0.0060 0.0000 - 0.9991 0.0000 0.0002 0.0000 - 0.9990
(S1),TS, 25% 0.0000 0.0077 0.0000 0.0000 - 0.0000 0.0002 0.0000 0.0000 —

p-values below the diagonal

of the primary antibody. Experiments during the stain-
ing process revealed that the combination of the primary
antibody CD14 with the fluorophore Alexa 488 resulted in
the clearest possible images.

With regard to the possible nonuniformity of the stain-
ing of single macrophages, it is obvious that the distribu-
tion of the macrophage sizes should be observed from the
convex hulls of the features rather than from the features
themselves. The slighty increased mean size of the double-
stained subpopulation may simply reflect the fact that the
detection of a double staining is less probable for small cell
fragments, dissected or cropped cells.

Subsampling within the tumor subregions leads to
almost perfectly correlated results, which are mutu-
ally correlated with coefficients greater than 0.99.
On the other hand, the discrepancies between the
counts and densities obtained for the whole tis-
sue samples and the tumor subregions cannot be
neglected.

e In general, comparison between image morphome-
try and gene expression analysis reveals moderate to low
correlation levels, regardless whether (GE) is compared
with (S1)/(S2) or with the outputs of the commercial

software kits (S3) and (S4). Further, we may observe that
normalization of the outputs of (S1) — (S4) improves the
correlations to a moderate level at best, and that corre-
lations for the CD163 staining/expression are better than
those for the CD14 staining/expression.

If tumor subregions are piloted instead of whole tissue
samples, correlations shift in a nonuniform way without a
considerable improvement.

e We may conclude that the ROF filter based seg-
mentation method constitutes a solid approach to obtain
reliable counts and distributions for different macrophage
types in IHC stained whole tissue samples. Compared
with counts of high power fields, the new method pro-
vides an easy access to a complete representation of
the heterogeneous tumor microenvironment. In terms
of Pearson correlation, results of gene expression pro-
filing are not reproduced by morphometrical image
analysis. In difference to GEP, ROF filter based seg-
mentation is able to identify and to count double-
labeled macrophages, thus enabling the study of diverse
macrophage subpopulations. Moreover, the method
allows for a systematic study of the local distribution of the
macrophages, thus enabling subsequent investigations of

Table 10 Correlations under subsampling (whole tissue samples and tumor subregions), normalized outputs

CD14%/488 nm channel

CD163%/555 nm channel

S (GE) Sn Sn SN S (GE) SN S S
whole whole TS TS TS whole whole TS TS TS
100 % 50% 25% 100 % 50% 25%

(S1), whole - 06184 0.8528 0.8533 0.8555 - 0.7422 09148 09144 09113
(GE), whole 0.0000 - 0.7478 0.7444 07318 0.0000 — 0.8069 0.8068 0.8036
(S1), TS, 100 % 0.0000 0.0000 — 0.9991 0.9968 0.0000 0.0000 - 0.9994 0.9970
(S1),TS,50% 0.0000 0.0000 0.0000 - 0.9981 0.0000 0.0000 0.0000 - 0.9984
(S1), TS, 25% 0.0000 0.0000 0.0000 0.0000 - 0.0000 0.0000 0.0000 0.0000 —

p-values below the diagonal
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Table 11 Distribution of feature sizes (px) in tumor subregions, output of (51), CD14%/488 nm channel

Features . . .

Convex hulls . . .
Staining resp. subpopulation all single double all single double
Min. 160 160 160 172 172 172
Max. 1500 1500 1500 6000 6000 5996
Mean 5346 486.1 5740 7533 659.8 829.2
Median 4455 390.5 494.5 5705 482.5 654.5
Stdev. 3136 298.5 3200 549.8 501.2 5752
95 % quantil 11955 1136.5 12315 1899 1736 1997

macrophage clustering and applications of point pattern
statistics.

As a future challenge, the detailed information about
macrophage counts and distribution obtained by the ROF
filter based segmentation method has to be tested for its
prognostic potential in different lymphoma diseases. In a
first step, we carried out a clinical application of the ROF
method to a large cohort of DLBCL patients (N > 400).
Based on IHC stained TMAs, image data for the Alexa
488, Alexa 555 and DAPI channels were generated by
the same protocol as described above. These images have
been analyzed in full analogy to the tumor subsections,
obtaining counts and densities for CD14- and CD163-
positive macrophages, to be investigated for possible cor-
relations with the documented clinical outcome. Again,
we observed a fairly robust behaviour of the method, cop-
ing well with folds, scratches and overstainings in the

tissue cores. Results will be reserved for a forthcoming
publication.

Conclusions

To the detection of IHC stained macrophages (CD14,
CD163) in DLBCL tissue samples, a ROF filter based
segmentation method has been successfully applied. The
method, providing number, area, shape, and location of
stained macrophages, is deterministic, fully automated,
externally repeatable, independent on training data as well
as on particular markers and completely documented.
Comparison of macrophage counts obtained by ROF fil-
ter based segmentation with gene expression data reveals
only moderate levels of correlation, thus indicating that
image morphometry constitutes an independent source
of information about antibody-polarized macrophage
occurence and distribution.

200
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Fig. 5 Histogram of feature sizes in tumor subregions, output of (S1), CD14%/488 nm channel. a — x-axis: size of detected features (px), linear scale.
y-axis: sum of feature counts over all 44 analyzed datasets. Blue: all features, green: features without double staining, yellow: features bearing double
staining. b — x-axis: size of convex hulls of detected features (px), logarithmic scale. y-axis: sum of feature counts over all 44 analyzed datasets.

Colors as before

160 165 1 %0 1160 €000




Wagner et al. Biological Procedures Online (2019) 21:13 Page 16 of 18

Fig. 6 Segmentation methods (S1) - (S4) coping with problems in tissue preservation. Features have been identified based on information from all
of three analyzed channels. a — d Sample with vessel (bottom left) and erythrocytes (middle). a — Original single-channel image (whole tissue sample
No. 24, cutout from tile No. (42, 16), CD163%/555 nm), contrast enhanced by factor 1.5, scale bar 45 um. b — Result of (S1), (S2); vessel as a
hyperfluorescent feature removed, erythrocytes partly ignored. € — Result of (S3), contrast enhanced by factor 1.5; vessel erroneously marked as
target area, erythrocytes partly ignored. d — Result of (54), contrast enhanced by factor 1.5; vessel as well as erythrocytes erroneously marked as
target area. e — h Sample with tissue fold. e — Original single-channel image (whole tissue sample No. 31, cutout from tile No. (3, 20),

CD147/488 nm), contrast enhanced by factor 2, scale bar 45 pm. f — Result of (S1), (S2); fold as a strongly fluorescent feature removed,
macrophages under the fold partly detected. g — Result of (S3), contrast enhanced by factor 2; fold erroneously marked as target area. h — Result
of (54), contrast enhanced by factor 2; fold erroneously marked as target area. i — | Sample with staining artifact (splatter of staining liquid). i — Original
single-channel image (whole tissue sample No. 11, cutout from tile No. (18, 21), CD163% /555 nm), scale bar 45 um. j — Result of (S1), (S2); splatter as
a hyperfluorescent feature removed, macrophages close to its border properly detected. k — Result of (S3); splatter erroneously marked as target
area. | — Result of (54); splatter erroneously marked as target area
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Additional files 1,2 and 3 contain the segmentation results for the ROIs,
whole tissue samples and tumor subregions, respectively.
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