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Abstract

Background: Apically located tight junctions in airway epithelium perform a fundamental role in controlling
macromolecule migration through paracellular spaces. Alterations in their expression may lead to disruptions in
barrier integrity, which subsequently facilitates entry of potential bacterial and other pathogens into the host.
Furthermore, there is emerging evidence that the barrier integrity of the airway in certain airway inflammatory
diseases may be altered. However, there is little consensus on the way this is assessed and measured and the
type of cells used to achieve this.

Methods: Here, we assessed four fixation methods including; (i) 4% (v/v) paraformaldehyde; (i) 100% methanol;
(i) acetone or; (iv) 1:1 methanol: acetone. Pre-extraction with Triton X-100 was also performed and assessed on
cells prior to fixation with either methanol or paraformaldehyde. Cells were also permeabilized with 0.1% (v/v)
Saponin in 1x TBS following fixation and subsequently stained for tight junction proteins. Confocal microscopy
was then used to visualise, compare and evaluate staining intensity of the tight junctional complexes in order to
determine a standardised workflow of reproducible staining.

Results: Positive staining was observed following methanol fixation for claudin-1 and ZO-1 tight junction proteins but
no staining was detected for occludin in 16HBE140- cells. Combinatorial fixation with methanol and acetone also
produced consistent positive staining for both occludin and ZO-1 tight junction proteins in these cells. When assessed
using primary cells cultured at air-liquid interface, similar positive staining for claudin-1 and ZO-1 was observed following
methanol fixation, while similar positive staining for occludin and ZO-1 was observed following the same combinatorial
fixation with methanol and acetone.

Conclusions: The present study demonstrates the importance of a personalised approach to optimise staining for
the visualisation of different tight junction proteins. Of significance, the workflow, once optimised, can readily be
translated into primary airway epithelial cell air-liquid interface cultures where it can be used to assess barrier
integrity in chronic lung diseases.
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Background

The airway epithelial layer remains the frontline of defence
against pathogens, aeroallergens and noxious gases by
establishing and maintaining a physical barrier. The integ-
rity of this layer is typically maintained by the presence of
a range of junctional complexes including: tight junctions;
adherens junctions; and desmosomes [1-4]. Apically lo-
cated tight junctions perform a fundamental role in regu-
lating solute transport across the airway epithelium [5] by
restricting macromolecule migration through paracellular
spaces [6-9]. Several families of proteins have been identi-
fied to form tight junctions between adjacent cells includ-
ing the occludin and claudin families. These proteins
contain four transmembrane domains with two extracellu-
lar loops, where the extracellular loops fuse with their
counterpart on adjacent cells [10] resulting in a belt-like
structure around the apical surface of airway epithelial cells
[4, 5, 11, 12]. In association with the transmembrane tight
junction proteins is the intracellular protein zona
occludens-1 (ZO-1) [10] which act by anchoring the tight
junction proteins to the cytoskeleton [13].

Studies have observed that decreases in ZO-1, claudin-1
and occludin organisation within the cell membrane leads
to disruption of barrier function in epithelial cells, thereby
allowing entry of bacteria and other pathogens into the
host [6-9, 14, 15]. Some evidence also suggests that alter-
ation of adherens junctions can also facilitate the entry of
pathogens into the host [6, 14]. Recent investigations sug-
gest that epithelial barrier integrity may be dysfunctional
in airway diseases such as asthma, where decreased tight
junctional complexes and increased layer permeability
have been observed [3, 16, 17]. Tight junction proteins
ZO-1 and occludin have also been shown to have lower
expression and a disorganised structure in asthmatic epi-
thelium, when compared to non-asthmatic epithelium,
resulting in reduced barrier function [15, 16].

Tight junction integrity has typically been assessed using
Transepithelial Electrical Resistance (TEER) [18]. Higher
resistance measurements are typically observed in conflu-
ent polarised cultures with intact junctional complexes
since ions cannot pass across the epithelial cellular layer
into basal compartments [19]. Conversely, low TEER values
are a consequence of increased ion transport across the
epithelial layer, indicative of increased permeability result-
ing from incomplete tight junctions [15, 19, 20]. Despite
these measurements providing insight into the global
changes, they fail to provide insight into localised changes
that may be occurring between cells. Thus, confocal
microscopy provides a valuable tool for the visualisation
and assessment of local protein changes and interactions,
and may also be used to corroborate TEER measurements.
Here, we optimised and established a methodology for
epithelial tissue fixation for the immunocytochemical ana-
lysis of tight junctions (ZO-1, claudin-1 and occludin),
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initially in a representative airway epithelial cell line
(16HBE140-), followed by corroboration in primary airway
epithelial cultures grown at air-liquid interface (ALI).

Methods

Reagents

The culture reagents Modified Eagle’s Medium (MEM),
Penicillin/Streptomycin, L-Glutamine, Foetal Calf Serum
(FCS) and Normal Goat Serum (NGS) were purchased
from Life Technologies (CA, USA). Triton X-100, trizma
base, sodium chloride, bovine serum albumin (BSA) and
fibronectin were purchased from Sigma Aldrich (MO,
USA). Collagen IV was purchased from BD Biosciences
(New Jersey, USA).

Antibodies

For immunocytochemistry, the following antibodies were
used: Claudin-1 (polyclonal), Occludin (monoclonal,
clone OC-3F10), ZO-1 (monoclonal, clone ZO1-1A12,
and polyclonal), AlexaFluor 488 (Goat anti-Mouse and
Goat anti-Rabbit) and AlexaFluor 568 (Goat anti-Mouse
and Goat anti-Rabbit). These antibodies were purchased
from Life Technologies (CA, USA). Hoechst 33,342 was
purchased from Sigma Aldrich (MO, USA).

Cell Culture and Maintenance

16HBE14o0- cells, a SV-40 transformed bronchial epithe-
lial cell line, were kindly provided by Dr. Dieter Gruenet
(University of California, San Francisco, USA). Cells
were cultured in MEM containing 10% (v/v) ECS,
100 U/mL (v/v) Penicillin/Streptomycin and 1% (v/v) L-
Glutamine in a 37 °C, 5% CO, incubator. For experi-
ments, cells were seeded at a density of 10,000 cells/
coverslip on glass coverslips previously coated with
10 pg/mL fibronectin, 30 pug/mL collagen I and 100 pg/
mL BSA. Cells were maintained under standard culture
conditions until 100% confluency over the coverslips
was achieved. Cultures were then continued for a further
3 days before being fixed for subsequent immunocyto-
chemical analysis to ensure complete generation of tight
junction proteins.

Establishment of ALI Cultures

Primary airway epithelial cells (AECs) were obtained from
children admitted for elective surgery for non-respiratory
related conditions [21-23] and de-identified prior to down-
stream analysis. Primary AECs were then grown on 6.5-
mm Transwell-Clear inserts 0.4 pum pore size (Corning,
NY, USA) pre-coated with 30 pg/mL human placental
collagen type I, which has been previously demonstrated to
support AEC growth [24]. Cells were grown under
submerged conditions in Bronchial-Air Liquid Interface
(B-ALI™, Lonza, MD, USA) growth media until confluent.
To differentiate into ciliated pseudostratified AECs, media
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was removed from the apical side and this was considered
Day 0 of ALI culture and the start of the experimental
period. Cells were then grown in B-ALI™ differentiation
media, added to the basolateral side every alternate day and
the apical side washed with tissue-culture sterile 1X PBS
weekly. Cultures were grown for 28 days at ALI to ensure
maximal differentiation as assessed by the presence of beat-
ing cilia as well as mucus production, as evident by mucus
build-up on the apical side of the cultures.

Fixation

This study sought to investigate various fixation methods
suitable for the reproducible staining of epithelial airway
cells. All treatments were repeated in triplicate. All fixation
combinations can be found in Table 1.

Paraformaldehyde

Cells were fixed using 4% (v/v) paraformaldehyde in
71 mM Tris Buffered Saline (TBS), pH 7.4, at room
temperature (RT) for 15 min, followed by washing with
TBS for 30 min at RT, replacing wash TBS every 5 min.
Cells were then stored in TBS at 4 °C until required.

Methanol, Acetone, Methanol: Acetone

Fixation with coagulant fixatives was performed using
either ice cold 100% methanol, acetone or 1:1 methanol:
acetone. Cells were fixed at — 20 °C for 10 min, followed by
washing with TBS for 30 min at RT, replacing wash TBS
every 5 min. Cells were then stored in TBS at 4 °C until
required.

Triton X-100 Pre-extraction

Cells were incubated with 0.2% (v/v) Triton X-100 in 1x
TBS on ice for 10 min, followed by gentle washing with
TBS for 30 min at RT, replacing wash TBS every 5 min.
Fixation following pre-extraction was performed with

Table 1 Fixative combinations used in this study. All fixative
combinations were performed in triplicate on 16HBE140-
cultured cells. Immunocytochemistry was performed on cells as
detailed

Pre-extraction

Fixation Permeabilization

- 4% Paraformaldehyde -
0.2% Triton X-100 4% Paraformaldehyde -
- 4% Paraformaldehyde 0.1% Saponin

- 4% Paraformaldehyde -
+ Acetone

- 100% Methanol -
0.2% Triton X-100
- 100% Methanol

100% Methanol -
0.1% Saponin
- 1:1 Methanol:Acetone -

- 100% Acetone -
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either methanol or paraformaldehyde as described
above. Cells were then stored in TBS at 4 °C until
required.

Permeabilization

Following fixation, permeabilization was performed on a
number of samples. Here, cells were treated with 0.1%
(v/v) Saponin in 1x TBS and incubated at RT for
10 min. Cells were then washed with 1x TBS for 30 min
at RT, replacing wash TBS every 5 min. Cells were then
stored in TBS at 4 °C until required.

Blocking Solution

To minimise non-specific binding of primary and second-
ary antibodies in samples, blocking solution containing
10% (v/v) NGS, 10% (v/v) FCS and 1% (v/v) BSA in 1x
TBS was incubated on cells for 30 min at RT. For parafor-
maldehyde fixed samples, 0.2% (v/v) Triton X-100 was in-
cluded in the blocking solution. In addition, all antibodies
were diluted in the blocking solution outlined above.

Immunocytochemistry

Primary antibodies were incubated on cells for 1 h at
RT, followed by washing with 1x TBS at RT every
10 min for 1 h. Secondary antibody incubation and wash
was performed as per the primary antibody incubation
step. Cells were also incubated with Hoechst (2.5 pg/
mL) for 5 min at RT during the final wash step to stain
for nuclei. All coverslips were mounted with mounting
medium containing 19 mM polyvinyl alcohol (PVA,
Sigma Aldrich, MO, USA), 45 mM Trizma Base (Sigma
Aldrich, MO, USA), 45 mM NaH,P0,.2H,0, 27% (v/v)
glycerol (Sigma Aldrich, MO, USA), and 4.9 mM chloro-
butanol (Sigma Aldrich, MO, USA). Negative control
samples were included to determine the level of non-
specific binding of secondary antibodies to the tissue.

Confocal Microscopy

Treated and control samples were imaged using a Nikon
A1l inverted confocal microscope (Nikon, Japan), with a
Nikon Plan Apo VC 60x NA 1.4 oil immersion objective
(Nikon, Japan) and NIS-AR Elements software (v4.2.22,
Nikon, Japan). Individual channels were captured sequen-
tially, where a 405 nm laser was used for Hoechst 33,342
with collection through a 450/50 bandpass filter, AF488
excited using a 488 nm laser with collection through 525/
50, and AF568 excited with a 561 nm laser and collected
through a 585/50 bandpass filter. Z-stack images with step
size of 0.5 um were collected with a pinhole of 35.8 pm
(1.2 A.U. for 488 nm laser), where the top and bottom of
the stacks were determined visually.
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Results
To determine the extent of tight junction formation in
epithelial cells we examined the effect of various fixatives
on the epithelial cell line 16HBE140- (Table 2). Initial ex-
periments did not produce staining for any fixation combi-
nations where fibronectin/collagen coating of coverslips
was omitted (data not shown). Coverslip coating was used
following these preliminary experiments to aid adherence
and cell growth [25]. Image analysis of paraformaldehyde
fixed cells, with a Triton X-100 permeabilization step,
showed no specific staining of tight junction complexes
Z0-1, occludin or claudin-1 (Fig. 1). Saponin was used fol-
lowing paraformaldehyde fixation as an alternative
permeabilization agent to Triton X-100. Data generated
showed that use of saponin slightly increased junctional
staining post paraformaldehyde fixation for ZO-1, but
positive staining was highly variable within samples
(data not shown). Occludin and claudin-1 staining
was absent following paraformaldehyde-saponin fix-
ation and permeabilization. Pre-extraction with 0.2%
Triton X-100 on ice, followed by fixation, was also
tested. However, following the pre-extraction treat-
ment, all cells lost attachment to the coverslip and
immunocytochemistry was not performed (data not
shown). Using a combinatorial approach of parafor-
maldehyde fixation, followed by acetone fixation to
increase permeabilization, also failed to yield positive
staining for ZO-1, occludin or claudin-1 (data not
shown).

Coagulative fixation methods were also tested to deter-
mine epitope accessibility. Positive staining was observed
following methanol fixation for ZO-1 and claudin-1 tight

Table 2 Qualitative assessment of fluorescent staining of tight
junction antibodies, where: - indicates negative staining; +
indicates weak staining with no consistent structure; ++
indicates moderate staining of tight junctions, with some
structure present; +++ indicates strong staining, with consistent
structures present

Fixation Claudin-1 Occludin Z0-1
4% Paraformaldehyde - - -

0.2% Triton Pre-extraction - - -
+ 4% Paraformaldehyde

4% Paraformaldehyde - - +
+0.1% Saponin

4% Paraformaldehyde - - -
+ Acetone

Methanol

0.2% Triton Pre-extraction - - -
+ Methanol

Methanol +0.1% Saponin + - +
Methanol + Acetone - +++ .

Acetone - - -
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junction proteins, but no staining was detected for occlu-
din (Fig. 2). Fixation with acetone failed to expose any
positive staining for ZO-1, occludin or claudin-1 in the
samples (data not shown). Permeabilization with saponin
following methanol fixation was unsuccessful in produ-
cing tight junction staining for any of the antibodies
assessed (data not shown). Combinatorial coagulative fix-
ation produced consistent positive staining for both ZO-1
and occludin. However, no claudin-1 staining was ob-
served (Fig. 3). No fluorescence was observed in negative
controls for all fixation methods, where positive sample
settings were used (data not shown).

Following optimisation of the staining protocol, stain-
ing on primary cells cultured to ALI was performed to
verify compatibility between the transformed cell line
and primary cells. Fixation of ALI culture with methanol
showed positive staining for both claudin-1 and ZO-1,
as seen with the 16HBE14o- cell line, whilst fixation
with 1:1 methanol: acetone produced positive staining
for occludin and ZO-1 (Fig. 4).

Discussion

In the current study, we found that fixation of
16HBE140- cells for the tight junction proteins ZO-1,
claudin-1 and occludin require different fixation proto-
cols for reliable staining patterns. For consistent staining
of claudin-1, fixation with ice cold methanol was re-
quired, whilst occludin needed a combinatorial approach
of methanol: acetone. We found that staining for ZO-1
could be positively identified using both fixation ap-
proaches, and as such, could be used as a counter stain
for both claudin-1 and occludin. Furthermore, we found
that staining patterns in cell line 16HEB14o- was con-
gruent with primary airway epithelial cells grown in ALL
This consistency in staining pattern reinforces their use-
fulness as a substitute for protocol optimization, as ac-
cess to paediatric primary epithelial cells is often limited.

Methodologies to perform reproducible immunocyto-
chemistry for tight junction proteins (ZO-1, occludin and
claudin-1) in epithelial derived cells to date are inconsist-
ent and, at times, conflicting [6, 26, 27]. Particularly for
epithelial cells, the fixation method must be carefully
chosen to ensure optimal staining for the antigens of
interest [28, 29]. Routine histological fixatives are often
used without thought as to why one fixative may be better
suited for a particular antigenic epitope than another.

The most common types of fixatives used in immuno-
cytochemistry fall into two categories: (1) non-coagulative
or cross-linking and (2) coagulative fixatives. The cross-
linking family include formaldehyde and glutaraldehyde
[29]. These fixatives transform the cytosol into an insol-
uble gel by the formation of methylene bridges between
proteins, which halt autolysis and harden tissue [30, 31].
Fixation via this method may alter some of the tertiary
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Claudin-1

Fig. 1 Paraformaldehyde fixation (4%) of 16HBE140- cells in culture. The top row of panels show absence of specific staining for claudin-1 (Green)
and ZO-1 (Red). The bottom row of panels show co-staining of occludin with ZO-1. Merged images showed nuclei staining with Hoechst (blue)

protein structure within the tissue, but generally maintains
secondary protein structures [29, 31-33]. Absence of
claudin-1 and occludin antibody labelling using this fix-
ation method in our laboratory may be due to the location
of the proteins within the cell membrane, preventing suffi-
cient access of the antibody to the epitope. Whilst the
Z0O-1 protein is not located within the cellular membrane,
the negative staining following paraformaldehyde fixation

may also be attributable to the restricted epitope access
due to cross-linked adjacent proteins, or steric hindrance.

As the cross-linking fixatives change cytoplasm into
an insoluble gel, permeabilization steps may be required
for immunocytochemical analysis of intracellular com-
ponents [32, 34, 35]. Surfactants and non-ionic deter-
gents, such as saponin and Triton X-100 respectively,
are commonly used in immunocytochemistry for the

Claudin-1

Fig. 2 Methanol fixation of 16HBE140- cells in culture. The top row of panels show claudin-1 co-stained with ZO-1. The bottom row of panels
show the destruction of occludin staining using methanol as the fixative. Merged images showed nuclei staining with Hoechst (blue)
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Claudin-1

Fig. 3 Methanol-acetone (

ages showed nuclei staining with Hoechst (blue)

) fixation of 16HBE140- cells in culture. The top row of panels show the absence of claudin-1
staining is clearly visible. The bottom row of panels show co-staining of occludin with ZO-1 using methanol-acetone as the fixative. Merged im-

1 staining, whilst ZO-1

purpose of increasing cellular permeability [35-38]. Solu-
bilisation of lipid components non-specifically by Triton
X-100, or specific cholesterol removal by saponin, facili-
tates antibody access to intracellular compartments and
epitopes without changing the cells’ ultrastructural integ-
rity [28]. Saponin might be expected to increase epitope
exposure for ZO-1, occludin or claudin-1. However, in

our samples, permeabilization with saponin did not alter
antibody staining of occludin or claudin-1 tight junction
proteins, with occasional variable staining for ZO-1. This
negligible staining following the use of surfactants may be
due to the epitope for claudin-1 and occludin being
located in a position that is not altered by the removal of,
nor coupled to, lipids or cholesterol.

QOccludin

staining for both claudin-1
Merged images showed nuclei staining with Hoechst (blue)

Fig. 4 Methanol-acetone fixation of primary airway epithelial cells (AEC) grown at air liquid interface (ALI). The top row of panels show positive
and ZO-1. The bottom row of panels show positive co-staining of occludin and ZO-1 in primary AECs grown at ALI.
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Pre-extraction*

Fixation* }—>| Permeabilization* )—>| Blocking |
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key points within the workflow which requires specialized optimization

| + Triton X-100 | | Paraformaldehyde | | + Saponin | | Immunocytochemistry |
OR OR
- Saponin | Primary antibodies |

Fig. 5 Schematic representation of the workflow required for the visualization of tight junctional complexes in airway epithelial cells. * denotes

FOLLOWED BY

| Secondary antibodies |

| Confocal microscopy |

Pre-extraction with Triton X-100, followed by fixation
with paraformaldehyde, has been suggested to remove
some background staining in tissues, as some soluble
components within the cell are removed prior to fixation
[29, 34]. As such, this should provide greater access for
antibodies to bind to epitopes of interest, as the lipids are
removed in a non-selective manner. However, following
exposure of confluent 16HBE140- cells to Triton X-100,
all cells appeared to lose attachment to the extracellular
matrix (ECM). There are also suggestions that paraformal-
dehyde is unable to sufficiently cross-link proteins in situ
[39], although other studies suggest that formaldehyde is
only released from tissues following years of washing tis-
sues in water, and cross-linking bonds cannot be broken
by urea [40]. In our study, it is likely that the epitopes of
interest are insufficiently exposed via the cross-linking fix-
ation and permeabilization methods commonly employed.

Coagulant fixatives are also commonly used to fix tissue
for immunocytochemistry. This family includes alcohols
such as ethanol and methanol, as well as acetone [33]. Fix-
ation of our samples with coagulant fixatives produced
varied results. The use of methanol fixation revealed posi-
tive staining for ZO-1, but occludin staining was absent.
Alcohol fixatives simultaneously fix and permeabilize cells,
by extracting phospholipids and precipitating proteins in
tissue [41]. They are frequently used for observing cellular
cytoskeletal elements, as shown with the positive ZO-1
tight junction staining. The coagulant fixatives displace
water molecules from proteinaceous materials, thereby
breaking hydrogen bonds [42]. Alterations of hydrogen
bonds can change the tertiary structure of proteins but
does not alter the amino acid sequence of the epitope
[42]. This can result in exposure of epitopes which were
previously buried within the protein, thereby allowing
antibody access and binding [42]. This alteration of pro-
tein tertiary structure protein may not have been sufficient
to unmask the occludin epitope, and as such, further in-
vestigation was required.

Acetone is another coagulative fixative with strong lipid
removal activity, particularly triglycerides and sterols [43].

In our samples, fixation with acetone failed to produce
positive staining for any tight junction proteins. As acetone
is a stronger organic solvent than alcohol, cell membrane
loss can be observed following cellular fixation [31, 43]. To
change the epitope exposure, without complete loss of cel-
lular membranes, a fixative of 1:1 methanol: acetone was
performed. Staining following dual fixation showed positive
fluorescence for ZO-1 and occludin proteins, however
claudin-1 staining was destroyed. It is plausible that the
extra denaturation required for occludin antibody access
results in masking of the claudin-1 epitope.

The optimized fixation protocol was then repeated on
primary airway epithelial cell culture samples derived from
healthy participants, where cells had successfully reached
a differentiated state when grown under ALI conditions.
Fixation of the cultures with methanol yielded positive
staining with claudin-1 and ZO-1, whilst methanol: acet-
one fixation yielded positive staining for occludin and ZO-
1, reproducing the findings seen with the 16HBE140™ cul-
tures. However, it should be noted that there were subtle
differences in the staining intensity as well as the pattern
of staining, suggesting that the final interpretation of
staining should be restricted to primary cultures and not
with the surrogate optimisation model.

Conclusions

In conclusion, this study successfully established a meth-
odological workflow (Fig. 5) using confocal microscopy to
compare and evaluate staining expression levels of mul-
tiple tight junction complexes in the human airway. Via
the workflow, we established that there was no universal
methodological approach appropriate for staining and
visualising all tight junction proteins investigated. How-
ever, we identified key points within the methodological
workflow which after specialised optimisation lead to sub-
sequent visualisation of each tight junction protein.
Finally, we successfully demonstrated the reproducibility
and translation of the workflow in primary AEC ALI cul-
tures, indicating the adaptability of this method in other
cell types. Of significance, this workflow can now be used
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to visualise epithelial tight junctions and assess barrier in-
tegrity in established cell cultures derived from chronic
airway diseases including cystic fibrosis, chronic obstruct-
ive pulmonary disorder and asthma.
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