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Abstract

Background: Indole-3-acetic acid (IAA) extraction and purification are of great importance in auxin research, which
is a hot topic in the plant growth and development field. Solid-phase extraction (SPE) is frequently used for IAA
extraction and purification. However, no IAA-specific SPE columns are commercially available at the moment.
Therefore, the development of IAA-specific recognition materials and IAA extraction and purification methods
will help researchers meet the need for more precise analytical methods for research on phytohormones.

Results: Since the AUXIN RESISTANT/INDOLE-3-ACETIC ACID INDUCIBLE (Aux/IAA) proteins show higher specific
binding capability with auxin, recombinant IAA1, IAA7 and IAA28 proteins were used as sorbents to develop an
IAA extraction and purification method. A GST tag was used to solidify the recombinant protein in a column.
Aux/IAA proteins solidified in a column have successfully trapped trace IAA in aqueous solutions. The IAA7 protein
showed higher IAA binding capability than the other proteins tested. In addition, expression of the IAA7 protein
in Drosophila Schneider 2 (S2) cells produced better levels of binding than IAA7 expressed in E. coli.

Conclusion: This work validated the potential of Aux/IAA proteins to extract and purify IAA from crude plant extracts
once we refined the techniques for these processes.
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Background
As one of the most important categories of phytohor-
mones, auxin contributes to virtually all aspects of plant
growth and development [1, 2]. Thus, phytohormone
quantification is very important. Currently, IAA is extracted
from plant tissues and then highly purified using stan-
dardized protocols [3, 4]. Exposure to light, heat and
oxygen can cause the degradation of IAA during sample
preparation and purification, as IAA is not very stable in
an aqueous environment. Thus, an IAA tracer labelled
with radioactivity is used to estimate the amount of re-
covery and correct for any loss of IAA [5]. In the classical
method, IAA extraction from plant tissues involves liquid
nitrogen freezing/lyophilization, grinding/homogenization,
treatment with organic solvents and the removal of solid
impurities. IAA is a weak polar molecule. Thus, organic
solvents with polarity close to IAA are the most effective

for IAA extraction from plant tissues, as they result in
greater efficiency and higher levels of extraction and re-
covery. However, a few recent studies used distilled
water to extract IAA from plant samples [6]. Alternate
types of extraction methods have been reported in previ-
ous studies that use various organic solvents, such as etha-
nol, methanol, acetonitrile, chloroform, acetone, propanol,
ethyl acetate and acetic acid [7–12]. Most recently, pre-
cooled 80% methanol has become a universal extraction
solvent for IAA and several other phytohormones because
of its high efficiency during extraction and enhanced levels
of recovery [6, 13].
Purification after extraction is critical because the

complex metabolites in crude plant extracts can influ-
ence the accuracy of the analysis of IAA. To overcome
the interference from other compounds in the extracts,
a number of methods based on different principles were
applied to the extraction and purification of IAA from
plant tissue. Liquid–liquid extraction (LLE) and liquid–
liquid microextraction (LLME), hollow fibre-based
liquid–liquid–liquid microextraction (HF–LLLME) and
dispersive liquid–liquid microextraction (DLLME) have
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been used previously for IAA purification [14–20].
Solid-phase extraction (SPE) and antibody-based immune
methods have recently become widely used to extract and
purify IAA [6, 21–26]. Optimized solid-phase microex-
traction (SPME) and double-layered SPE (DL/SPE)
resulted in a higher level of recovery and better ability
to remove pigments [27, 28]. SPE and SPME cartridges
filled with matrix compound (sorbent) are used to extract
and purify the target molecules from mixtures in the
solution, as the sorbent can selectively bind certain
molecule(s) based on an array of mechanisms, including
adsorption, hydrogen bonding, polar and nonpolar inter-
actions, cation/anion exchange and size exclusion [29].
Since modern SPE/SPME techniques are usually applied
online coupled with HPLC, the current emphasis involves
choosing various sorbents for trapping analytes [30, 31].
Many commercial SPE/SPME columns based on different
sorbents have been widely used for high-throughput phy-
tohormone extraction and purification from crude plant
extracts [22, 23, 26]. However, commercial SPE columns
for multiple phytohormones, such as Sep-Pak C18, Oasis
HLB, Oasis MCX and Oasis MAX, are not designed spe-
cifically for phytohormones such as IAA. Thus, they are
not highly selective. Recently, molecularly imprinted poly-
mers (MIPs) and polymer monolith microextraction
(PMME) were used to improve the specific recognition
capability for phytohormones [32–34]. MIPs have been
widely used to detect the presence of compounds in the
environment because they offer advantages such as easy,
cheap and rapid preparation along with high thermal and
chemical stability [35–37]. Immunoaffinity SPE sorbents,
also known as immunosorbents, are based upon molecu-
lar recognition using antibodies that offer higher affinity
and selectivity for the target molecule (antigen). They are
suitable for extraction and purification of a single analyte
from complex biological and environmental aqueous
samples. Moreover, immunoaffinity chromatography (IAC)
and immunoaffinity gels (IAG) have been used to purify
ABA and cytokinins [38–42].
Advances in phytohormonal research require greater

efficiency and increased sensitivity for the analysis of
phytohormones. This should lead to advances in phyto-
hormone extraction and purification that occur more
quickly in a less complicated manner. The techniques
for sample preparation are complicated, and most
methods are not specially designed for IAA. In the
auxin signalling pathway, auxin action is based on binding
to the TRANSPORT INHIBITOR RESPONSE1/AUXIN
SIGNALING F-BOX (TIR1/AFB) nuclear receptors.
Auxin stabilizes the co-receptor complex composed of
the TIR1/AFB and AUXIN RESISTANT/INDOLE-3-
ACETIC ACID INDUCIBLE (Aux/IAA) proteins that
trigger the proteasome-dependent degradation of the
Aux/IAA transcriptional inhibitor to release the Auxin

Response Factor (ARF) factor that induces the auxin-
mediated transcriptional reprogramming [43, 44].
Interestingly, TIR1, Aux/IAA proteins and co-receptors
(complex of TIR1/AFB and Aux/IAA) show high affinity
towards auxin both in vivo and in vitro, as this hormone
acts as the molecular glue that complexes the TIR1/AFB
and Aux/IAA proteins [45]. Their auxin-specific binding
characteristics can be utilized to improve the procedures
for auxin extraction and purification. Therefore, we
expressed AtIAA1, AtIAA7 and AtIAA28 in Escherichia
coli and Drosophila Schneider 2 (S2) cells and developed a
method for IAA extraction and purification using the
recombinant proteins as the recognition molecules.

Methods
Chemicals and Reagents
GST Sefirose™ resin, reduced glutathione and columns
were purchased from the Shanghai Sangon Biotech
Company (Shanghai, China). Enzymes, relative reagents
and kits in gene cloning and vector construction were
purchased from TransGen Biotech (Beijing, China).
Stable isotope-labelled standard [2H5] IAA was pur-
chased from Olchemim Ltd. (Olomouc, Czech Republic).
HPLC-grade acetonitrile (ACN) and methanol were
obtained from the TEDIA Company Inc. (OH, USA).
Other common chemicals and reagents were obtained
rom the Shanghai Sangon Biotech Company (Shanghai,
China). Milli-Q water was used in all experiments. The
buffers used in this study are shown in Table 1.

Aux/IAAs Clone and Recombinant Vector Construction
Total RNA was extracted from 15-day-old Arabidopsis
(Arabidopsis thaliana) by using Trizol reagent
(Thermo Fisher Scientific Inc.) Reverse transcription
was performed by using Script First-Strand cDNA
Synthesis Super Mix Kit (TransGen Biotech, Beijing).
Four pairs of primers were designed for recombinant
vector construction based on the coding sequences of
IAA1, IAA7 and IAA28 in Arabidopsis (Table 2). The
amplification of full-length target genes was catalysed
by high-fidelity DNA polymerase FastPFU (TransGen
Biotech, Beijing) using cDNA as the template. The
PCR products produced with the first three pairs of

Table 1 Buffers used in the study

Buffer Components pH value

PBS 140 mM NaCl, 2.7 mM KCl,
10 mM Na2HPO4 and 1.8 mM KH2PO4

7.4

High pH buffer 0.1 M Tris-HCl and 0.5 M NaCl 8.5

Low pH buffer 0.1 M sodium acetate, 0.5 M NaCl 4.5

Exchange buffer 50 mM Tris-HCl and 10 mM
reduced glutathione

8.5
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primers were inserted into the plasmid pGEX-KG
after double digestion with SmaI/BamHI and EcoRI
(Thermo Fisher Scientific Inc.). TAC promoter drove
the expression of the target genes in E. coli. The PCR
products were inserted into pIEx-3 by using IAA7-SF
and IAA7-SR after their digestion by SalI and NotI
(Thermo Fisher Scientific Inc.). IAA7 expression was
driven by the IE1 promoter with the hr5 enhancer.

Culture Conditions and Recombinant Protein Expression
in E. Coli
Expression vectors were transformed into three E. coli
strains, including BL21, Tuner and Rosetta, by electro-
poration. Transformants were grown at 37 °C overnight
in LB medium until the OD600 reached 0.6. The cultures
were diluted in fresh LB medium using a ratio of 1:50
and then grown in liquid culture at 37 °C on a shaker
until the cells reached an OD600 of 0.6. Finally, the bacteria
underwent another 5 h of shaking in culture to induce
expression of the recombinant protein at 25 °C after
adding IPTG to a concentration of 0.4 mM. The cells
were collected by centrifugation and stored at −80 °C.

Culture Conditions and Recombinant Protein Expression
in S2
Drosophila Schneider 2 (S2) derived from a primary cul-
ture of late stage Drosophila melanogaster embryos was
purchased from Thermo Fisher Scientific Inc. (Catalogue
no. R690-07). To increase the cell yield, the S2 cells were
grown in Schneider’s Drosophila medium (Catalogue no.
11720-034) at 28 °C without CO2 in suspension with
spinners and shake flasks according to current protocols.
Split cells at a 1:2 to 1:5 ratio were diluted into new cul-
ture every 3 to 4 days when the cells reached a density
of 2 to 4 × 106 cells/mL. This procedure maintained the
S2 cells. The insect expression vector was stably cotrans-
fected into S2 with pCoHygro using the calcium phos-
phate transfection method, and the transfectants were
selected by 300 μg/mL hygromycin-B. Cell death was veri-
fied by Trypan blue staining. A 19:1 (w/w) ratio of

expression vector to selection vector was used in co-
transfection. Target recombinant protein was secreted into
the medium and then collected by centrifugation for
further purification.

Recombinant Protein Isolation and Purification
Bacterial cells were collected and resuspended in PBS
(pH 7.4). Cells were disrupted by ultrasonification.
Supernatant was collected for target protein purification
after centrifugation at 20,000 g for 10 min at 4 °C. For
insect expression, the medium was collected from 100-mL
cultures by centrifugation, since the recombinant protein
was secreted into the medium. Supernatant was concen-
trated to less than 5 mL by centrifugation at 7500 g for
10 min in Amicon Ultra-4 Centrifugal Filter Devices with
a 50 kDa nominal molecular weight limit (NMWL) from
Millipore at 4 °C. Condensed culture medium was diluted
5 times in PBS to prepare it for protein purification.
Protein solution was added to a column pre-filled with
GST Sefirose™ resin at a speed of 1 mL/min. The purified
target proteins remained trapped in the column after it
was washed with 5 resin volumes of PBS.

IAA Quantification by LC-MS/MS
Solution containing IAA was pumped into the column,
and the IAA was trapped by the recombinant Aux/IAA
proteins. Unbound molecules were washed off with 3
resin volumes of PBS. The outlet solution was collected
after elution and freeze dried. The IAA sample was
injected into LC-MS/MS (Shimadzu 8030 Plus) using a
reverse C18 column to perform IAA determination after
re-dissolving the compound in acetonitrile. Condition
setting and programming for IAA detection were per-
formed as described by Ma et al. [46].

Results
Expression of Aux/IAA Proteins in E. Coli
In this research, the recombinant vector was constructed
based on the expression plasmid pGEX-KG with a GST
tag (Fig. 1a) that enabled the convenient isolation and
purification of recombinant proteins using GST resin.
The expression level for a particular gene in prokaryotic
expression is largely dependent on the strain. To ensure
that an adequate level of recombinant protein was pro-
duced, the vector containing IAA1, IAA7 and IAA28
segments was transformed into three expression strains
of E. coli, and the expression was compared in BL21,
Tuner and Rosetta (Fig. 1b–d). IAA1, IAA7 and IAA28
were all highly expressed in different strains when they
were induced by 0.4 mM IPTG at 25 °C. The results
showed that the Rosetta strain was more effective at ex-
pressing IAA1 and IAA28, while Tuner expressed the
highest levels of IAA7. The cells produced 0.019 (IAA1),
0.016 (IAA7) and 0.018 (IAA28) gram of recombinant

Table 2 Primer lists in vector constructions

Primer
name

Sequences Enzyme
site

IAA1F 5′-cccgggAATGGAAGTCACCAATGGGC-3′ SmaI

IAA1R 5′-gaattcTCATAAGGCAGTAGGAGCTTCG-3′ EcoRI

IAA7-BF 5′-ggatccATGATCGGCCAACTTATGAACC-3′ BamHI

IAA7-BR 5′-gaattcTCAAGATCTGTTCTTGCAGTAC-3′ EcoRI

IAA28F 5′-ggatccATGGAAGAAGAAAAGAGATTGG-3′ BamHI

IAA28R 5′-gaattcCTATTCCTTGCCATGTTTTCTAG-3′ EcoRI

IAA7-SF 5′-gtcgacATGATCGGCCAACTTATGAACCTC-3′ SalI

IAA7-SR 5′-gcggccgcTCAAGATCTGTTCTTGCAGTACTTC-3′ NotI
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protein per gram of bacterial cells. Finally, we collected
sufficient amounts of the recombinant proteins of IAA1,
IAA7 and IAA28 from the cell supernatant using GST
resin. No foreign bands existed after PAGE analysis
(Fig. 1b–d), indicating that the highly purified protein
can be used to analyse IAA binding.

Expression of IAA7 Protein in S2 Cells
In addition to prokaryotic cells, yeast, insect, mammalian
and plant cells are frequently used to express recombinant
proteins. Differences in protein processing, modification
and folding after translation in different expression sys-
tems may influence the activity of the recombinant pro-
tein. To clarify whether the expression system affects the
IAA binding characteristics of recombinant IAA7 protein,
we optimized the culture conditions of S2 to be more suit-
able for the expression of IAA7 (Fig. 2b–j). The S2 cell
line was derived from a primary culture of late-stage
(20–24 h old) Drosophila melanogaster embryos. Many
features of the S2 cell line suggest that it is derived
from a macrophage-like lineage [47]. S2 cells can grow
at room temperature without CO2 as a loose, semi-
adherent monolayer in tissue culture flasks and in
suspension culture with spinners and shake flasks. In
our experiment, the S2 cells grew better in spinners
(Fig. 2b and c). Drosophila Schneider 2 cells can be
transfected with the recombinant expression vector
alone for transient expression studies or in combination
with a selection vector to generate stable cell lines. We
tested the expression of IAA7 protein by transient
transfection before undertaking the selection of stable
cell lines. The results proved the feasibility of IAA7
expression in S2. To create stable transfectants for long-
term storage, increased expression and large-scale produc-
tion of the desired protein, we employed the selection
vector pCoHygro to perform co-transfection with pIEx-3-

IAA7 (Fig. 2a) and achieved stable cell lines by screening
with hygromycin (Fig. 2d–i). For the final step, 5 mg
recombinant protein was purified from 100 mL culture
medium through GST resin (Fig. 2j). The recombinant
protein (approximately 64 kD) was a fusion protein in-
cluding N-terminal GST-Tag, His-Tag and S-Tag and
adiopkinetic hormone (AKH) signal peptides that
helped the recombinant protein to be secreted into the
extracellular medium with high efficiency (Fig. 2a). In this
study, we transfected secretion vector pIEx-3 into S2 and
successfully screened a stable transfectant line. The results
showed that pIEx-3 functioned effectively in Drosophila
Schneider 2 cells, and the yield of the target recombinant
protein was up to 5 mg per 100 mL culture in the stable
transfectant line.

IAA Extraction and Purification
In this study, we designed an IAA extraction and purifi-
cation strategy based on the use of recombinant Aux/
IAA proteins. First, we pre-filled a cartridge with GST
resin to selectively bind the GST-Aux/IAA fusion pro-
teins. This gravity column permitted isolation and puri-
fication of the target recombinant protein from the cell
supernatant, as GST resin showed ideal binding activity
to bioactive GST fusion proteins. Next, the aqueous
sample was passed through the gravity column, and the
IAA was trapped by the Aux/IAA proteins. Purified IAA so-
lution was collected and directly used to perform IAA deter-
mination by LC-MS/MS after elution. The gravity column
filled with GST resin could be reused after regeneration.
To obtain the greatest amount of recovery, the ideal

procedure would elute all of the trapped IAA from the
gravity column with a limited volume of eluant as
quickly as possible. To test the efficiency of the eluants,
we selected five solutions as potential eluants, including
ultra-pure water, PBS, high pH buffer (HPB), low pH

Fig. 1 Recombinant protein expression in E. coli. a Scheme of expression vector based on pGEX-KG; b IAA1 expressed in strains of BL21, Tuner
and Rosetta; c IAA7 expressed in strains of BL21, Tuner and Rosetta; d IAA28 expressed in strains of BL21, Tuner and Rosetta
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buffer (LPB) and GST exchange buffer (reduced gluta-
thione, RG). Eluants of water, and particularly PBS, sta-
bilized the protein structure and maintained bioactivity.
LC-MS/MS analysis indicated that little IAA remained
in solution when water and PBS (pH 7.4) were used to
elute IAA from the extraction and purification column.
In contrast, relatively higher alkaline or lower acid envi-
ronments strongly affected the binding capability between
GST and GST resin, or between Aux/IAA protein and
IAA. The isoelectric points (pI) of IAA1, IAA7 and IAA28
are all greater than 7.0, thus indicating that their struc-
tures and bioactivities are more sensitive to alkaline condi-
tions. Therefore, the results indicated that HPB (pH 8.4)
could more efficiently elute the IAA from the gravity
column than LPB (pH 4.5). GST exchange buffer con-
taining 0.1 M Tris-HCl and 10 mM reduced glutathi-
one was used to elute the expressed GST peptides from
the GST resin (Fig. 3a). The eluting efficiency of the
GST exchange buffer did not differ significantly from
that of HPB (Fig. 3a). To simplify the process, the eluant
was reduced to as small a volume as possible. In this
research, IAA was almost entirely released from column
after elution with 3 column volumes of HPB, LPB or RG

(Fig. 3b). In this method, the outlet solution contained
only a few types of molecules and ions, including IAA,
recombinant protein, Tris–HCl and NaCl. Thus, the
outlet solution is suitable for quantification by HPLC-
MS/MS. Therefore, this method greatly facilitates the
sample preparation for tandem mass spec-based IAA
quantification.
The different Aux/IAA proteins showed varying af-

finities towards auxin. To identify the Aux/IAA protein
with the highest IAA binding capability, we added 1 ng
2H5-IAA dissolved in 5 mL PBS into the gravity column
containing purified GST-IAA1, GST-IAA7 or GST-IAA28
protein derived from E. coli. The IAA was eluted by HPB
after 10 min, 30 min and 60 min incubation at 4 °C. The
IAA in the outlet solution was measured using HPLC-
MS/MS (Fig. 4a). The standard curve (Fig. 4b) was used to
calculate the contents of IAA after different types of outlet
solutions were examined (Fig. 4c). The results indicated
that the incubation time was critical for IAA to bind the
Aux/IAA proteins (Fig. 4c). Their binding capabilities
continually decreased as the incubation time was ex-
tended. In addition, IAA7 showed higher affinity and
binding efficiency for IAA when compared with IAA1 and

Fig. 2 Expression of recombinant IAA7 protein in S2. a Scheme of expression vector based on pIEx-3; b 7 d adherent culture after passage; c 7 d
suspension culture after passage; d S2 cells before co-transfection; e–i Stable cell line screening through homomycin after co-transfection (ACTF);
j Gel analysis of target protein after purification from cell culture medium
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Fig. 3 Eluting IAA through various eluents. a Efficiency of eluting IAA from column and difficulty level of IAA sample preparation before quantification
after elution; b Efficiency of eluting IAA through various volumes of eluents

Fig. 4 IAA extraction and purification through Aux/IAA proteins. a IAA determination through LC-MS/MS; b Standard curve of IAA; c IAA binding
activities of Aux/IAA protein after 10 min, 30 min and 60 min incubation in column, and control was the column containing GST resin but no recombinant
proteins; d IAA recoveries when using IAA1 (expressed in Rosetta), IAA7 (expressed in Tuner and S2 cells) and IAA28 (expressed in Rosetta) as the sorbents
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IAA28. We also compared the difference in binding
capability between IAA7 expressed in bacterial cells
(IAA7-B) and that expressed in S2 (IAA7-S) (Fig. 4d). The
result showed that the bioactivity of IAA7-S was signifi-
cantly higher than that of IAA7-B (Fig. 4d). This result
indicated that the binding capability of the recombinant
protein towards IAA was higher when expressed in
eukaryotes.

Discussion
S2-pIEx-3 System is Favourable for Expression of Higher
Bioactivity Aux/IAA Proteins
The recombinant proteins derived from various expres-
sion systems displayed differing amounts of bioactivity,
and the pIEx-3 was suitable for expressing highly bioactive
proteins. The pIEx-3 vector was previously designed for
the cloning and expression of proteins in transiently trans-
fected Spodoptera-derived insect cells. Transcription is
driven by the AcNPV-derived hr5 enhancer and the im-
mediate early promoter IE1. pIEx-3 contains the coding
sequence for the signal peptide of adipokinetic hor-
mone (AKH) to allow the secretion of the expressed
protein [48, 49]. pIEx-3 also contains the N-terminal
GST-Tag, His-Tag, and S-Tag, as well as a C-terminal
HSV-Tag coding sequence for protein detection and
purification (Fig. 2a). More than 40 proteins, including
cytoplasmic protein kinases or regions of a receptor
with kinase activity, kinase interacting proteins, phos-
polipases, nuclear transport proteins, phosphatases, and
heat shock proteins have been expressed using this
InsectDirect System, and the yields were as high as
8 mg from 100 mL culture in Sf9 and Sf21 cells [50]. In
this study, the recombinant proteins displayed higher
bioactivity, although lower recombinant protein yield
was obtained in the stable transfectant S2 line (Fig. 4d).
One potential reason for this could be that the post-
translation, modification and folding in insects may differ
from these processes in native plants.

The Aux/IAA Proteins Exhibited Different IAA Affinity
Aux/IAA proteins belong to a large protein family. In
Arabidopsis, 29 Aux/IAA proteins have been identified,
and the existence of multiple Aux/IAA–ARF combina-
tions may mediate specific responses [51–54]. The type
of Aux/IAA protein may be the key factor in the auxin
trapping that occurs in plant cells, since different Aux/
IAA–TIR1 co-receptors varied greatly in their affinity
for auxin [45]. In this study, the higher IAA affinity ob-
served with the IAA7 protein confirms this hypothesis.

Affinity IAA Extraction and Purification Methods Showed
Great Potential
The ideal extraction and purification method for a par-
ticular phytohormone must be simple, rapid and specific

to reduce its degradation and improve its recovery, as
plant scientists require accurate quantification in trace
plant tissues. It is critical to keep developing new extrac-
tion and purification methods for these compounds to
satisfy the need for greater precision that accompanies
the highly active field of investigation into the mecha-
nisms of phytohormone actions. Currently, organic extrac-
tion and solid-phase extraction are the most frequently
used methods in phytohormone extraction and purifica-
tion prior to their analysis by LC-MS/MS. MIPs and some
developed operational strategies, such as two-dimensional
HPLC, online 2D HPLC and high-performance thin-layer
chromatography (HPTLC), have been employed to purify
phytohormones [23, 55, 56].
To further simplify the extraction procedure and im-

prove specificity for a particular phytohormone, the use
of bioactive protein/complex applications shows great
potential in phytohormone sample preparation. For ex-
ample, some functional proteins in the signalling pathway
of auxin, such as auxin binding proteins, receptors and
co-receptors, are able to accurately recognize and bind
auxin molecules even below the fM level in plant cells.
Thus, Aux/IAA proteins display a high level of affinity
and selectivity towards IAA. In this study, Aux/IAA pro-
teins were used as a selective sorbent, and an affinity IAA
extraction and purification method was developed. This
method eliminated the problem of interference by struc-
turally similar compounds and simplified the procedure of
IAA extraction and purification from plant crude extracts.
Our application of Aux/IAA protein validated the use of
phytohormonal signalling proteins in phytohormone
extraction and purification.
IAA can be extracted and purified from crude sample

extracts using our method, but unfortunately not all of
the protein was recovered. One reason for this could be
the limited bioactivity and stability of the Aux/IAA pro-
teins. To achieve highly stable Aux/IAA proteins, other
expression systems should be tested to produce recom-
binant proteins; other tags should be used to solidify
target proteins, and other buffers should be tested for
the isolation and purification of proteins and the trapping
of IAA. To achieve higher binding capabilities, the IAA
co-receptor, which complexes with both the TIR1 and
Aux/IAA protein, should be further tested as a sorbent
since this co-receptor displayed a much greater affinity for
auxin [45].

Conclusion
We expressed Aux/IAA proteins in E. coli and S2
cells and developed a method for IAA extraction and
purification based on the recombinant proteins of
Aux/IAAs. This method can be used for reference in
bioactivity study and detection practice for other bio-
active molecules.
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