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a Bacillus thuringiensis Cry1Ab toxin enhances
insecticidal activity
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Abstract

Baculoviruses have been genetically modified to express foreign genes under powerful promoters in order to
accelerate their speed of killing. In this study a truncated form of cry1Ab gene derived from Bacillus thuringinsis
(Bt) subsp. aegypti isolate Bt7 was engineered into the genome of the baculovirus Autographa californica multiple
nuclearpolyhedrosis wild type virus, in place of the polyhedrin gene by using homologous recombination in
Spodoptera frugiperda (Sf) cells between a transfer vector carrying the Bt gene and the wild type virus linearized
DNA. Recombinant wild type virus containing the cry1Ab gene was detected as blue occlusion-negative plaques in
monolayers of Sf cells grown in the presence of X-Gal. In Sf cells infected with plaque-purified recombinant virus,
the cry1Ab gene was expressed to yield a protein of approximately 82-kDa, as determined by immunoblot analysis.
The toxicity of the recombinant virus expressing the insecticidal crystal protein (ICP) was compared to that of the
wild-type virus. Infected-cell extract was toxic to cotton leaf worm Spodoptera littoralis second instar larvae and the
estimated LC50 was 1.7 μg/ml for the recombinant virus compared with that of wild-type virus which was 10 μg/ml.
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Introduction
The development of synthetic pesticides since 1940 coupled
with the improvement in chemical applications technology
dramatically increased the potential for agricultural pest
control [1]. It did not take long before people began to
see the shortcomings of this new technology. Pests that
had been naturally controlled by predators and parasites
began to cause significant damage and became resistant
to chemical pesticides [2]. Moreover, chemical pesticides
have become expensive and imposed greater hazard to
the environment and all living organisms [3]. An alter-
native strategy for effective control of pests is the use
of biological insecticides either by itself or within an
integrated pest management program (IPM) [4,5]. The
benefit of biological control by viruses, especially baculo-
viruses has become apparent in recent years. Baculoviruses
are major insect pathogens and are characterized by the
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presence of a large circular double stranded DNA genome
and enveloped rod shaped virions. Baculoviruses and their
use as biological insecticides have been studied for several
years [6]. Since baculoviruses are host-specific and do not
infect vertebrates or plant species, and considered to be
the best among viruses for insect pest control [7]. More
than 600 insect species serve as hosts for baculoviruses,
which belong to family baculoviridae [8]. They are insect
pathogens and cause fatal disease in insects mainly in
members of Lepidopteran order [9-11]. However, wild
type baculoviruses have several limitations in their use
as biological control agents [12]. The major problems are
the slow speed of action, low virulence to older instar
larvae and sensitivity to UV-light [13]. Development of
genetically engineered viruses has resulted in an enhance-
ment of the speed with which baculoviruses kill target
pests by introducing additional pesticidal genes into the
genome of Autographa californica nucleopolyhedrovirus
wild type virus. These recombinant baculoviruses were
evaluated under laboratory conditions for their improved
pesticidal properties [7,14]. Because the C-terminal half of
135-kDa Cry1 is not toxic, it could be eliminated and use
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only the N-terminal half, in the same time the truncated
proteins do not form inclusions. These insecticidal trans-
genes included insect hormone genes which disturb the
physiological hormonal balance of the insect [15,16]
and Bt gene(s). [1,17,18]. Moreover, the production of
recombinant baculoviruses expressing specific neurotoxin
proteins such as mite toxin and the scorpion toxin [19-21]
enhanced the biological activity of baculoviruses. This
study aims to introduce a truncated cry1Ab gene from
Bacillus thuringiensis into a baculovirus in order to
enhance its insecticidal activity.

Materials and methods
Bacterial strains
Bacillus thuringiensis local Egyptian isolate Bt7 was
provided by Prof. G. Osman Agricultural Genetic Engineer-
ing Research Institute (AGERI). Escherchia coli strain XL-1
blue (Stratagene Inc. 1 north state st suite 900, Chicago,
606062, USA) was used as the host for plasmid DNA
preparation and propagation.

Virus
Autographa californica nucleopolyhedrovirus wild type
virus, strain E2 [22] was used as a wild type (wt) virus
(supplied by Invitrogen, 3175 Staley Road, Grand Island,
NY 14072, USA).

Insects cell culture
Spodoptera frugiperda cell line IPLB SF21-AE (Sf 21) was
kindly provided by Dr. Hussen, A. Virology Dept. Faculty
of Veterinary, Cairo University, Giza, Egypt. Sf21 cells
were maintained at 27°C and grown in a TNM-FH
medium that was supplemented with 10% (w/v) fetal
bovine serum and antibiotics, and subcultured every 3
to 4 days.

Insects
Cotton leaf worm (Spodoptera littoralis – Boisd – Noc-
tuidae - Lepidoptera), was provided by Insectary of
(AGERI), Giza, Egypt. The Egyptian cotton leaf worm
Spodoptera littoralis (Biosd) were reared in insectary of
AGERI under highly controlled conditions the larvae
were fed on semisynthetic diet described by Shorey
and Hale [23], the insect culture were maintained on
25 + or - 2°C, 65 - 70% RH and natural photoperiod.

Construction of a transfer vector containing the truncated
cry1Ab gene
Cry1Ab toxin was chosen because of its high insecticidal
activity against Spodoptera sp. The truncated form of
the cry1Ab gene, encoding the 82 kDa toxin protein
was cloned from Bt7 strain followed by determination
of its DNA sequences. The truncated cry1Ab gene was
amplified using one pair of specific primers (WG1 and
WG2) based on the nucleotide sequence of the published
cry1Ab gene.The cry1Ab fragment 2.2 kb was amplified
by using a pair of specific primers i.e.WG1 forward (5′
ATGGATAACAATCCGAACATC3′) and WG2 reverse
(5′ TAGCGTAACGTAATT CTCTTT 3′). The primer
was designed according to cry1Ab gene in gene bank
accession number: gbKF93868.2.1. The amplified DNA
fragment was cloned into pGEM-T easy vector (Promega,
2800 Woods Hollow Road, Madison, WI 53711 USA ). The
new construct was named wpGM-Bt7. The wpGM-Bt7 was
subcloned into pBlueBacIII transfer vector (Invitrogen) by
restriction digestion using NcoI and PstI endonucleases.
The newly constructed plasmid named wpBac-Bt7.

Co-transfection of Spodoptera frugiperda cells and
isolation of recombinant virus
Recombinant wild type baculovirus, containing the cry1Ab
gene under transcriptional control of the polyhedrin
promoter was introduced by in vitro homologues re-
combination as described in the Invitrogen instruction
manual. Linear viral DNA (500 ng) was co-transfected
with (1-2 ug) wpBac-Bt7 containing the cry1Ab into S.
frugiperda Sf21 cells using liposome-mediated trans-
fection method according to Webb and Summers [24].
After 48 h the medium from transfected cells was collected.
For plaque assay screening, three viral serial dilutions
(10−1, 10−2 and 10−3) were mixed with 1 × 106 S. frugiperda
cells Sf 21 and seeded in complete TC-100 medium in
60 mm dishes (Falcon Invitrogen) for 1 h. After incuba-
tion, the media were completely removed from all plates
and the infected cells were overlaid with the supplemented
TC-100 medium containing 0.5% baculovirus agarose
and 150 μg ml−1 X-gal (5-bromo-4-chloro-3-indolyl-ß-
D-galactopyranoside) as a chromogenic substrate. The
plates were incubated at 27°C for five days and screened
for the presence or absence of polyhedra by light micros-
copy. Plaque forming units (pfu) were detected as blue
spots after five to six days post-infection (p.i.) and poly-
hedrin negative blue plaque were visualized using an
inverted light microscope. The presence of Bt gene cry1Ab
in the recombinant virus AcW-Bt7 were confirmed by PCR
using WG1 and WG2 specific primers.

Analysis of protein expression by SDS-PAGE and
Immunoblotting
Insect cells were infected with AcW-Bt7 at a multiplicity
of infection (moi) of (10 moi/cell) recombinant virus. The
expression of the crystalline protein of cr1Ab in the insect
cells was detected by SDS-PAGE and immunoblotting
assay. Sf cells infected with the recombinant virus were
lysed in electrophoresis sample buffer (0.06 mol −1 Tris-
HCl pH 6.8, 2% SDS, 10% glycerol, 5% b-mercaptoethanol
and bromophenol blue). Samples were denatured for five
min in boiling water and separated in 10% polyacrylamide
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gel [25]. Gels were stained with 0.1% Coomassie blue
R-250 in 7% (v/v) acetic acid and 50% methanol. The
gels were destained in 7% (v/v) acetic acid with 50%
methanol. For immunodetection, proteins were transferred
using a semi-dry blotter (Bio-Rad) on to a PVDF mem-
brane (Millipore) and probed with an antibody directed
against the Cry1A protein. The immune-detection was
performed using the ECL kit from Amersham Bioscience,
church farm business park, corston bath Ba2 9Ap, UK.

Bioassay of the recombinant virus
The bioassay of infected Sf 21 cells with recombinant virus
against second instar of cotton leaf worm compared to the
wild type virus. Sf 21 cells were infected at an moiof 10
and collected at 72-h post infection (p.i.). For each virus,
the cells were washed twice with PBS freeze-thawed
several times to disrupt the cell membrane then the
samples were diluted over a concentration range of 1.5-
300 μg ml−1 of polyhedra then assayed against second
instar larvae of cotton leaf worm (CLW) as described
by Ibara and Federici [26]. For each viral concentration
Twenty second instar larvae were added in each cup.
Bioassays were repeated three times. Mortality was scored
daily until death or pupation. The LC50 was determined
by probit analysis plot [27]. Control treatments consisted
of uninfected larvae and infected larvae with wild type
virus.

Results
Cloning of Bacillus thuringiensis cry1Ab Gene
PCR was carried out to amplify a 2.2 kb fragment by
using whole Bt7 genomic DNA as a template. The PCR-
amplified DNA fragment was purified and cloned in TA
cloning vector (pGEM-T-Easy vector, Promega). Screening
for the positive clones (white colonies) was done using of
both single and double restriction enzyme digestion. The
new construct was named wpGM-Bt7. DNA sequencing
of cry1Ab gene was carried out using the automated
sequencer ABI PRISM 310. The sequence analysis of
cry1Ab indicated that the amplified fragment is a typical
Bt gene with low G +C content (37.63%) and high A +T
content (62.37%). Moreover, the nucleotide sequence
alignment of the cry1Ab gene revealed that the cry1Ab
of Bt7 had an identity of 98% with the Genbank cry1Ab
sequence while it was 100% identity with the Genbank
at amino acid level. The sequence of cry1Ab gene of
the isolate was submitted to GenBank with the acces-
sion #KC581790.

Sub-cloning of cry1Ab into pBlueBacIII baculovirus
transfer vector
cry1Ab was subcloned into non-fused pBlueBacIII baculo-
virus transfer vector under the control of the polyhe-
drin gene promoter. Screening of the baculovirus hybrid
plasmids using double digestion with NcoI and PstI endo-
nucleases showed an 2.2 kb DNA fragment corresponding
to the expected size of the cry1Ab gene. The resulting
hybrid plasmid was named wpBac-Bt7.
Generation and purification of genetically modified wild
type virus containing cry1Ab gene
Wild type baculovirus was chosen to be the parental
virus for generation of recombinant virus by using the
homologous recombination method. Sf cells were co-
transfected with baculovirus hybrid plasmid wpBac-Bt7
and the linearized wild type virus DNA to facilitate the
replacement of the cry1Ab gene (located in the hybrid
plasmid) in place of the polyhedrin gene (located in the
wild type baculovirus genome) via homologues recom-
bination in the presence of Cellfectin cationic liposome
reagent (Figure 1). Recombinant virus was distinguished
from the wild type virus by using the plaque assay method
[28]. Four blue plaques were selected. They indicated
the occurrence of homologues recombination within the
insect cell and resulted in a recombinant virus which
carried the Bt cry1Ab gene with blue plaque phenotype
and named AcW-Bt7. This result was further confirmed
by detection of cry1Ab gene through PCR (Figure 2).
SDS-PAGE of the total protein extract of infected cells
(Figure 3) and also Western blot analysis of the protein
profile by using a polyclonal antibody specific for the
Cry1Ab protein, confirmed the presence of the 82 kDa
protein band, which reacted successfully with the Cry1A
specific antibody (Figure 4).
Insect toxicity and bioassay of the recombinant baculovirus
The biological activity of the AcwBt7 recombinant virus
expressing Bt Cry1Ab toxin protein was evaluated against
cotton leaf worm Spodoptera littoralis 2nd instar larvae.
The LC50 value for Acw-Bt7 and the wild type virus were
determined by feeding of 2nd instar larvae of cotton leaf
worm on a semi-artificial diet with different concentra-
tions of the final whole culture (FWC) ranging from
1.5-300 μg ml−1 for both the recombinant virus Acw-Bt7
and virions of the wild type virus. The results of the bio-
assay revealed that the LC50 value for the recombinant
virus was 1.7 μg ml−1, compared to the LC50 value for
the wild type virus which was 10 μg ml−1. Regression
analysis of the cotton leaf worm larval response to
Acw-Bt7 (recombinant virus) and wild type virus are
illustrated in (Figure 5). The LC50 was determined by
probit analysis plot [27]. Control treatments consisted
of uninfected larvae and infected larvae with wild type
virus.
These result of the bioassay revealed that the recom-

binant virus is five-fold more effective than the wild
type.
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Figure 1 Schematic diagram of the recombinant virus AcW-Bt7 construction. (A) The Cry1Ab gene (2.2 kb) was PCR amplified using WG1
and WG2 specific primers introducing PstI and NcoI restriction sites to its 5' and 3' ends, respectively. The digested Cry1Ab-PstI/NcoI fragment
was cloned into Pst/NcoI sites of pBlueBacIII transfer vector generating the recombinant plasmid wpBac-Bt7. The features of pBlueBacIII carrying
the truncated form of Cry1Ab gene under control of Polyhedrin promoter are shown. (B) Upon co-transfection of the wpBac-Bt7 transfer vector
and the linearized Bac-N-Blue DNA into Sf9 cells, homologous recombination between ORF1629 sequences and lacZ sequences are occurred
generating the recombinant virus AcW-Bt7.
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Figure 2 Ethidium bromide-stained 1% agarose gel showing
the amplified cry1Ab fragment using: Lane 1: total DNA of
strain Bt7. Lane 2: wpBac-Bt7 recombinant plasmid (positive
control). Lane 3: wt AcNPV DNA (negative control). Lane 4: AcwBt7
DNA recombinant virus. Lane 5: PCR negative control without
template. M: 1 kb plus ladder DNA marker.

Figure 3 SDS-PAGE of total protein profile of I × 106 S. frugiperda
infected cells with recombinant virus shows: Low range protein
marker (M). Lane 1: mock-infection. Lane 2: Cry1Ab protein as a
positive control. Lane 3: Sf cells infected with recombinant virus
AcWBt7. Lane 4: Sf cells infected with wild type virus.
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Figure 4 Western blotting of approximately 5 × 104 S. frugiperda
21 cells showing the detection of Bt Cry1Ab toxin 82-kDa after
48 hrs p.i. Lane 1: purified Cry1Ab toxin (positive control), lane 2: cells
infected with wt AcNPV (negative control) and lane 3: cells infected
with AcwBt7 recombinant virus.
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Discussion
Because the C-terminal half of 135-kDa Cry1 is not toxic,
it could be eliminated and use only the N-terminal half,
in the same time the truncated proteins do not form
inclusions. A recombinant virus containing the trun-
cated cryIAb gene from Bacillus thuringiensis Bt7 was
constructed successfully. The insecticidal crystal protein
Figure 5 LC50 regression line of S. littoralis 2nd instar larval
response to different viral concentrations of the recombinant
virus (AcwBt7) and the wild type virus.
(ICP) Cry1Ab of 82 KDa was produced in the infected
Sf cells. These results proved that wild type baculovirus
can be used to express and study the properties of the
insecticidal Bacillus thuringiensis protein yielding infor-
mation relevant to an understanding of the molecular
biology of this protein as well as to improve the baculovirus
insecticidal activity. These results agree with the findings of
[29,30], who introduced a truncated (orf) gene coding for
the N-terminal 645 amino acids of the protoxin in a similar
way into a wild type virus to avoid crystal formation. This
protein produced in considerable amounts was biologically
active, but as expected, did not precipitate into crystals
confirming that the C-terminal part of the Cry1Ab ICP
is required for crystal formation [31,32]. Chang et al.
[30] noted also that the complete cry1Ab open reading
frame (orf ) crystal protein expressed by AcNPV/JM3
recombinant virus from the polyhedrin promoter in Sf
cells was highly toxic to P. brassicae larvae. These results
indicated that the wild type baculovirus-expressed ICP is
authentic and could in principle enhance the insecticidal
action of a recombinant baculovirus. The results of the
bioassay revealed that the LC50 value for the recombinant
virus was 1.7 μg ml−1, compared to the LC50 value for
the wild type which was 10 μg ml−1. These results of the
bioassay revealed that the recombinant virus is 5-fold
more effective than the wild type virus, and this results
will encourage us to test this recombint virus on other
lepidoperan pests. This is in agreement with the results of
[33-35], who noted that the level of expression of the
Cry1Ab and Cry1Ac proteins in insect cells infected with
the occluded viruses (p10- based promoter) AcOBtm and
AcOBt73 had at least 1/5 of the expression of the same
proteins in insects infected with the non-occluded viruses
(polyhedrin-based promoter), AcBtm and AcBt73. This
lower expression could be due to the simultaneous
expression of the polyhedrin gene, since they might
compete for the same resources or transcription factors
inside the cell. The toxic action of Bt in vivo is known to
be dependent on the binding of activated toxin to the
external surface of midgut microvilli, where the toxins
appear to bind to specific proteins receptors [36,37]
and then intercalate forming transmembrane cation
pores [38] that lead to cell death. However, it has been
shown that the Cry1A and CryIIIA toxins can insert
into planar lipid bilayers that have no protein receptors
[30,39]. Moreover, evidence from patch clamp studies
of the action of the Cry1C toxin on Sf cells indicated
that this Bt toxin may act inside the cell and is capable
of inserting into the cell membrane from the cytoplasmic
side [40,41]. These results are consistent with that of
[8,42]), who reported that the normal targets of the δ-
endotoxin are the gut epithelial cells. However, several
other types of cell have also been shown to have recep-
tors for the toxins [11,43]. Characterization of factors
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determining the host-range of the baculoviruses may lead
to greater potential for manipulation of the host-range.
Considering that the use of baculoviruses may increase
substantially in the next 10 years [44]. With growing
awareness of environmental issues associated with expand-
ing the demand for effective bioagents although Baculo-
viruses are essentially nonpathogenic to mammals as well
Bt these may be need further study in terms of Biosafety
of recombinant baculovirus as a result of viral genome
alteration.
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