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Abstract

Long non-coding RNAs (IncRNAs) are non-protein coding transcripts longer than 200 nucleotides. The post-transcriptional
regulation is influenced by these IncRNAs by interfering with the microRNA pathways, involving in diverse
cellular processes. The regulation of gene expression by INncRNAs at the epigenetic level, transcriptional and
post-transcriptional level have been well known and widely studied. Recent recognition that IncCRNAs make
effects in many biological and pathological processes such as stem cell pluripotency, neurogenesis, oncogenesis and etc.
This review will focus on the functional roles of INcCRNAs in epigenetics and related research progress will be summarized.
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Introduction

Messenger RNA (mRNA) is the RNA that carries informa-
tion from DNA to the ribosome for protein synthesis.
And yet, many RNAs do not code for proteins in eukary-
otes. There are RNAs that lack an apparent open reading
frame (ORF) of 300 nt or longer. They do not encode a
protein product thus classified as putative noncoding
RNAs [1-3]. Long non-coding RNAs (IncRNAs) are mole-
cules longer than 2 kb in length with a coding potential of
less than 100 amino acids, or non-protein coding tran-
scripts with the length of longer than 200 nucleotides (nt)
[1,4-6]. For this definition, it somewhat arbitrary could
not distinguish IncRNAs from small regulatory RNAs.
Now, there have been identified far greater amounts of
IncRNAs than protein coding genes [7-9]. A majority of
annotated eukaryotic protein-coding ORFs were charac-
terized with high level of phylogenetic diversity and the
conservation. And the level of its conservation and the
rate of synonymous to no synonymous substitutions were
applied as additional criteria. It also applied for distin-
guishing the protein-coding transcripts containing bona
fide functional ORFs from non-coding transcripts among
novel RNAs [1-3]. As we know, there is an underlying
dogma of molecular biology that the purpose of RNA is to
direct the assembly of proteins from amino acids. How-
ever, a few exceptions to this paradigm were explored
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(such as ribosomal RNA and transfer RNA), which were
functional RNA macromolecules that did not code for
protein [10].

It has been reported that about 20% of transcription
progress across the human genome would be associated
with protein-coding genes [11]. The fact indicates that
IncRNAs is at least four-times longer than coding RNA
sequences [5]. However, it may be large-scale comple-
mentary DNA (cDNA) sequencing projects to reveal the
complexity of transcription, such as FANTOM (Func-
tional Annotation of Mammalian cDNA) [12].

RNA is an information encoding molecule with high
flexibility and high-fidelity. It has also been characterized
with easy activation, modification, transportation, and
degrasion. Thus, RNA is considered as an integrative
character of both the digital lexicon of DNA and the
analog language of proteins. It is also a dynamic partici-
pant of DNA and protein molecules in performing cellu-
lar activities.

According to taxonomic, non-coding RNAs (ncRNAs)
are composite of the familial “housekeeping” RNAs and
regulatory RNAs in recent intensive studies. There are
many different sizes of NcRNAs and for this reason they
have been divided into small and long classes: small
ncRNAs (sncRNA) being less than 200 nt and IncRNA
greater than 200 nt to over 100 kb in length [13]. The
current cut-off has been arbitrary and corresponds to
specific biochemical protocols. Most categories of small
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infrastructural or regulatory RNAs have been excluded
(tRNAs, snRNAs, miRNAs, siRNAs, piRNAs, tiRNAs,
spliRNAs, sdRNAs and others) (Figure 1) [10].

It is predicted that there are thousands of IncRNAs in
the mammalian transcriptome [2,14-17]. No strict min-
imal size is required for classifying a noncoding tran-
script as a “long” non-coding RNA and there were many
IncRNAs with thousands of nucleotides [18]. There are
no clear-cut, uniformly available criteria for determining
a non-coding character of an RNA [2,19,20]. The widely
accepted method for distinguishing protein-coding and
non-coding RNAs among novel transcripts has analyzed
the ORFs in each transcript as a primary criterion [21-24].

Epigenetics associated with a gene activity state that
may be stable over long periods of time, persist through
many cell divisions, or even be inherited through several
generations and all without any variations to the primary
DNA sequence [25-27]. What is the relationship of IncRNAs
and epigenetics? In this review, the recent studies will be in-
cluded and we have tried to demonstrate the function of
IncRNAs and its influences on epigenetics.

The function of IncRNAs

LncRNAs were considered as non-functional junk ini-
tially. And now, their presence and significance have still
being debated [28-30]. It is now apparently observed
that many IncRNAs are the key regulators of transcrip-
tional and translational output and therefore make ef-
fects on cell identify and function (Figure 2) [17,31-33].
However, different from general mRNAs exported to the
cytoplasm for translation, many IncRNAs are now known
to be restrained in various sub-nuclear compartments
[3,34,35], which suggesting that such RNAs may have a
potential function in the compartment where they are
located.
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Studies have shown that IncRNAs play critical regula-
tory roles in diverse cellular processes such as chromatin
remodeling, transcription, post-transcriptional processing
and intracellular trafficking [16,19,31,36-40] (Figure 3).
LncRNAs could be a highly abundant, rapidly evolving
class of cellular factors with a wide range of cellular
functions [2,19,36,41].

Imprinting

Imprinting has been a significant process in identifying
special nucleic acid and protein, such as DNA methylation
and histone modification. LncRNAs have been found to
participate in imprinting processes. It means IncRNAs in-
fluence the monoallelic expression of a gene according to
its parents of origin. More than 200 IncRNAs were found
to participate in imprinting processes. Depending on their
parental origins, differentially methylated regions unmethy-
lated DNA imprinting control regions (ICRs), resulting in
specific expression of nearby IncRNAs and suppressing
neighboring genes in cis [42].

The H19 IncRNA-MBD1 complex could interact with
histone lysine methyltransferases. Therefore, it could work
by bringing repressive histone marks on the differentially
methylated regions of the three direct targets of the H19
gene [43].

Airn and Kenqlotl/LIT1 (Kenql opposite transcript 1,
or long QT intronic transcript 1) are examples of IncRNAs
that cause suppression of paternally inherited genes. In
particular, Kcnqlotl/LIT1 is involved in the repression
of several protein-coding genes in cis by interacting
with repressive chromatin modifying complexes [44,45].
Kenqlotl/LIT1 is an imprinted region contains at least
eight genes that are expressed exclusively or preferentially
from the maternal allele [46]. Kcnglotl/LIT1 acts as an
organizer on a tissue/lineage-specific nuclear domain,

Figure 1 Classification of IncRNAs based on the sizes
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Figure 2 Long non-coding RNA-mediated transcription regulation. A. Transcription activation by IncRNA. In this example, Evf-2 is transcribed
from an ultra-conserved enhancer and forms a stable complex with DIx-2, which in turn activates DIx-2 as a transcriptional enhancer. B. Transcription
suppression by INcRNA. Top: in response to DNA damage, INcRNAs are transcribed from the 5-upstream region of the CCND1 gene and recruit the
RNA-binding protein TLS to modulate CBP and p300 to inhibit CCND1 transcription. Bottom: LncRNA transcribed from the upstream of the
minor promoter of DHFR gene competes with transcription factors to inhibit the major promoter transcription in quiescent cells.
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involving in epigenetic silencing of the Kcnql imprint-
ing control region [46-49].

Developmental regulation
LncRNAs have played crucial roles in controlling gene
expression during both developmental and differenti-
ation processes. Furthermore, the number of IncRNA
species will be higher in genomes of developmentally
complex organisms. It highlights the significance of RNA-
based levels of control in the evolution of multi-cellular
organisms [50]. Expression of IncRNAs is dynamically reg-
ulated during male germline development. On the con-
trary, IncRNAs may function to regulate gene expression
at both transcriptional and posttranscriptional levels based
on both genetic and epigenetic mechanisms [51].

MEG3 (Gtl2) was a IncRNAs in human with the length
of about 1.6 kb. There are a number of splice isoforms in
MEG3 and it retains introns creating longer transcripts

[52,53]. Recent studies have shown that Meg3 splicing iso-
form was silenced and in pituitary tumor, cancer cell
growth would be inhibited by its ectopic expression. All
these results suggested that Meg3 RNA acted as a growth
suppressor [54]. Furthermore, MEG3 expression is not only
associated with tumor grade, but also suppressing DNA
synthesis and stimulating p53-mediated trans-activation in
meningiomas cell lines [55]. Meg3 may play vital anti-
tumor effects in tongue squamous cell carcinoma patho-
genesis and represent potential prognostic biomarkers
for stratification of patients with tongue squamous cell
carcinoma [56].

Diseases associated induction/derivation

More and more evidences have proved that IncRNAs
play critical roles in various biological processes. The
mutations and dys-regulations of these IncRNAs con-
tribute to the development of many complex diseases,
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Figure 3 Possible IncRNA targeting mechanisms. Based on these potential mechanism, INcCRNAs may play critical regulatory roles in diverse
cellular processes such as chromatin remodeling, transcription, post-transcriptional processing and intracellular trafficking [16,19,31,36-40].
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such as virus infection and carcinogenesis. Beta2.7 is the
popular one being studied in virus infection. Generally,
beta2.7 specifically binds and prevents the re-localization
of essential complex I subunit GRIM-19 (gene associated
with retinoid/interferon-induced mortality-19). In re-
sponse to apoptotic stimuli, beta2.7 is responsible for
stabilizing the mitochondrial membrane potential and
mitochondrial ATP production. It also prevents meta-
bolic dys-function, which will be essential for complet-
ing the virus’ life cycle [57,58]. The reactive oxygen
species production will be reduced by the over-expression
of beta2.7 RNA, thus the apoptosis could be inhibited
[59,60]. LncRNAs have been strongly associated with can-
cer [61]. The expression of LncRNA PRINS (Psoriasis
susceptibility-related RNA Gene Induced by Stress) will
be in psoriatic epidermis and it will also be regulated by
the proliferation and differentiation state of keratinocytes
[62-64]. In keratinocytes, the expression of G1P3 is an
anti-apoptotic protein with high expression in psoriasis
and it will be regulated by IncRNA PRINS [65].
LncRNAPCAT-1, a target gene of polycomb repressive
complex 2, has been implicated in disease progression
by promoting cell proliferation [66]. The up-regulation
of ANRIL (antisense non-coding RNA in the INK4
locus) is required for the expression of the tumor sup-
pressors INK4a/pl6 and INK4b/pl5 in prostate cancer
[67-69]. HOTAIR up-regulation is associated with poor
prognosis in breast cancer, liver, colorectal, gastrointestinal
and pancreatic cancers. Meanwhile, it also probably con-
tributes to promote the tumor invasiveness and metastasis

[70-75]. In human melanomas, approximately 50 genes
have been partly regulated by hyper-methylation of CpG
islands in their regulatory regions [76].

Compared with DNA or protein, RNA molecules are
considered to be more efficiently couple bioenergetic re-
quirements with information storage and processing
[77]. Therefore, the advent of RNA based networks is
thought to be responsible for fueling the explosive evo-
lutionary innovations, which may characterize the hu-
man brain form and function [41,78,79]. The brain is a
conspicuous consumer of energy resources. It is also a
major consequence of cerebral ischemia for energy me-
tabolism and exhaustion of adenosine triphosphate [80].
Brain development and function are tightly regulated by
epigenetic mechanisms by gene expression modulation
in response to intrinsic and extrinsic signals [81,82]. The
IncRNAs are also dynamically expressed during pluripo-
tency and differentiation in neural or glial cells [83,84].
The knock-down of four IncRNAs has been associated
with neuronal differentiation. The function of these men-
tioned IncRNAs were mainly physically interacted with
SOX2, PRC2 complex component, REST and SUZ12. The
cellular differentiation fate will be altered from a neuro-
genic to a gliogenic program. The results suggested the
functional role of the IncRNAs in neural cell fate specifica-
tion [84-87].

The versatile function of IncRNAs
There are many different functions of IncRNA has been
explored in latest few years. Besides of transcription
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regulation, there are also several versatile IncRNAs that
have been evidenced, such as Kcnqlotl, Airn, Xist and
HOTAIR. Their function have mainly focused on regu-
lating transcription of multiple target genes through
epigenetic modifications [46,88-90]. For the insulin like
growth factor 2 receptor (Igf2r) imprinted cluster, located
on mouse chromosome 17, the expression of paternal-
specific non-coding transcript antisense Igf2r RNA (Airn,
108 kb), is required for the silencing of three genes on the
paternal allele. These genes have spread over a large
genomic region spanning 400 kb [91]. On the mouse
X-chromosome, expression of X-inactive specific tran-
script (Xist) of IncRNA from the designated inactive
X-chromosome is essential for the silencing of inactive
X-chromosome [87,92-94]. Some genes on the Homeo-
box D (HOXD) cluster are located over a 40 kb genomic
region on human chromosome 2. These genes will be
silenced by IncRNA HOTAIR, which is originated from
the HOXC cluster on chromosome 12 [95]. On mouse
chromosome 7, the potassium voltage-gated channel
subfamily Q member 1 (Kcnql) imprinted cluster spreads
over a 1 Mb genomic region in embryos. Multiple genes
are contained and it will be silenced on the paternal allele
by the un-spliced IncRNA Kcnql overlapping transcript 1
(Kenglotl, 91 kb) in cis. While, some IncRNAs, tran-
scribed by RNA polymerase II, are able to recruit tran-
scriptional repressive complexes including PcGs and G9a
to silence specific genomic regions, both in cis (top) and
in trans (bottom) [31,96,97] (Figure 4).

Spliced IncRNAs, compared with such un-spliced as sin-
gle exon transcripts, intergenic and cis-antisense RNAs
are more stable than those derived from introns [98]. The
sub-cellular localization analysis indicates the location of
IncRNAs is widespread in cell, with nuclear-localized
IncRNAs more likely to be unstable [99].
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LncRNAs and epigenetics

Epigenetics is applied to describe the study of heritable
variations in gene activity which is independent of DNA
sequence variations in genetics. It is generally applied to
refer to epigenetic modifications on the genetic material
of one cell. Epigenetics is analogous to genomics and
proteomics and it is the study focusing on genome and
proteome of one cell [100]. Epigenetic modifications are
reversible modifications on the DNA of one cell or his-
tones that may affect gene expression without altering
the DNA sequence [100].

LncRNAs linked with epigenetics by DNA methylation
Chromatin is the combination of DNA and proteins that
collectively make up the contents of cell nucleus [101,102].
Chromatin is in charge of DNA packaging, gene expression
and DNA replication [103,104]. The mechanism of epige-
nomic control is generally considered at the level of chro-
matin [105-107]. Histones proteins can be chemically
modified by as the process such as acetylation, methylation,
sumoylation and ubiquitylation. The processes will result
in structural variations in chromatin and the access of
DNA will be allowed [108-112].

Recent findings reveal that IncRNAs are implicated in
serial steps of cancer development [113]. These IncRNAs
interact with DNA, RNA, protein molecules and/or their
combinations. It acts as an essential regulator in chromatin
organization, transcriptional and post-transcriptional regu-
lation. Their mis-expression confers the cancer cell capaci-
ties for tumor initiation, growth, and metastasis. There is
also a review demonstrating the roles of IncRNAs in cancer
diagnosis and therapy. It reported expression profiles were
different for numerous IncRNA in urothelial cancer [114].
The phenotype-specific expression and a potential mech-
anistic target were studied and it demonstrated that the

Air, Kcnq1ot1, or Xist/RepA

Figure 4 Long non-coding RNA-mediated chromatin remodeling. The INncRNAs, transcribed by RNA polymerase Il could recruit transcriptional
repressive complexes including PcGs and G9a to silence specific genomic regions, both in cis (top) and in trans (bottom) [31,96,97].
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IncRNAs may be prognostic biomarkers for this cancer.
The LncRNAs such as up-regulation of HOTAIR could be
associated with poor prognosis in breast cancer, liver, colo-
rectal, gastrointestinal and pancreatic cancers. Meanwhile,
it also probably contributes to promote the tumor invasive-
ness and metastasis [70-75].

There are CpG islands in the upstream region of the
miR-375 gene and aberrant DNA methylation in this gene
can be observed in specific melanoma stage [115,116]. His-
tone modification of DNA methylation is one vital epigen-
etic mechanism to regulate the expression of genes [117].
DNA methylation and histone modifications are epigenetic
mechanisms leading to the deregulation of IncRNAs ex-
pression in cancers [118]. Epigenetic up-regulation of
IncRNAs at 13q14.3 in leukemia is linked to the down regu-
lation of Cis. It is a gene cluster that targets in NF-kB [119].
Normal melanocytes, keratinocytes and cell lines derived
from stage one melanoma were minimal methylated at this
locus [120-122]. Whereas, the islands from cancer cells de-
rived from stage three or more advanced metastatic melan-
oma samples were hyper-methylated [123,124]. The tumor
suppressor IncRNAs will be down-regulated or silenced by
DNA methylation. And hence consequent up-regulation of
oncogens would be involved in carcinogenesis [125]. Hyper-
methylated IncRNAs were re-expressed by demethylation
treatment with DNA methylation transferase (DNMT) in-
hibitor, 5-azadC, within 24-96 h [126]. The expression of
hyper-methylated IncRNAs would be further enhanced by
treatment in combination with histone deacetylase (HDAC)
inhibitor such as 4-phenylbutyric acid or trichostatin [127].
The fact indicated a collaborative role between DNA methy-
lation and histone modifications during the silencing effect
of tumor suppressive IncRNAs [128]. A few DNA methyl-
transferase proteins including Dnmt3a and Dnmt3b [129], as
well as methyl-DNA-binding domain proteins (MBDs), are
able to form DNA-protein complexes [130].

As for human melanomas, abnormal methylation of the
tumor suppressor RASSF1 is a hallmark of many cancers
including uveal and metastatic melanoma [131,132]. DNA
methylation was considered as predictors of recurrence in
non muscle invasive bladder cancer: an MS-MLPA ap-
proach [133,134].

Considering the complex origin of melanoma and the
existence of heterogeneous subtypes, it is considered that
the presence of a single biomarker would not be sufficient
to make an informed diagnostic decision [135]. The high
affinity RNA-binding activity of MBD proteins was re-
cently characterized and it seemed to be different from
the methyl CpG DNA binding domain protein. It was
hypothesized that DNMTs and MBD proteins may allow
RNA molecules to participate in DNA methylation-
mediated chromatin regulation [136].

Chromatin modifications appear to be correlated with
CpG island methylation, in which methylation is repeatedly
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exhibited in tracts of DNA sequence at the fifth carbon
atom of cytosines. Cytosine methylation is the only
known endogenous modification of DNA in mammals
and it occurs through DNA methyltransferase-mediated
methylation [137].

There is one of the best understood mechanisms be-
hind epigenetics. It involved methylation of cytosine
residues at specific positions in the DNA molecule
[138,139]. It has well characterized the enzymes that
have carried out the methylation reaction [140]. The
mechanism is that the configuration of methylated po-
sitions is propagated through DNA replication [141].
The typical consequence of methylation in a genomic
region is the repression of nearby genes [142].

Epigenetic role for IncRNAs in gene regulation

A novel mechanism of epigenetic repression of the
RASSF1A tumor suppressor gene has involved antisense
unspliced IncRNA. In this mechanism, the expression of
the RASSF1 isoform has been selectively repressed by
ANRASSF1, overlapping the antisense transcript in a
location-specific manner [143].

During the latent infection of human cytomegalovirus
(HCMYV) in CD14 (+) and CD34 (+) cells, RNA4.9 inter-
acts with components of the polycomb repression com-
plex (PRC) as well as the MIE promoter region where
the enrichment of the repressive H3K27me3 mark. It
will also disclose the repression function of IncRNA on
transcription [144].

Berghoff EG and his colleague have shown that Evf2
(Dlx6as) IncRNA antisense transcription, Evf2-dependent
balanced recruitment of activator and repressor proteins
enabled differentially transcriptional control of adjacent
genes with shared DNA regulatory elements [145]. Re-
searches from another lab indicated that the intronic
long non-coding RNA ANRASSF1 recruited PRC2 to
the RASSF1A promoter, reducing the expression of
RASSF1A and increasing cell proliferation [146]. LncRNA
loc285194 is a p53 transcription target; tumor cell growth
is inhibited by ectopic expression of loc285194 both
in vitro and in vivo [147].

The IncRNA-LET has been reduced by hypoxia-induced
histone deacetylase 3 by reducing the associated histone
acetylation-mediated modulation of the IncRNA-LET pro-
moter region. And the down-regulation of IncRNA-LET
was found to be a key step in the stabilization of nuclear
factor 90 protein. It leads to hypoxia-induced cancer cell
invasion [148]. IncRNA-HEIH plays a key role in cell cycle
arrest at stage G(0)/G(1). In addition, it was associated
with enhancer of zeste homolog 2 (EZH2) and also re-
quired for the repression of EZH2 target genes [149].

TNFa expression is regulated by the long non-coding
RNA THRIL (TNFa and hnRNPL related immunoregu-
latory LincRNA: large intergenic non-coding RNAs)
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through its interaction with hnRNPL (heterogeneous
nuclear ribonucleoprotein L) [150]. Both activation and
repression of immune response genes would be mediated
by lincRNA-Cox2 [151].

Epigenetic role for IncRNAs in gene activation

The dynamics of miRNA regulatory network mediated
by RNA editing is implicated in stroke. LncRNAs-151 is
found to be unregulated after middle cerebral artery oc-
clusion. The immature form of IncRNAs-151 is subject
to RNA editing that influences the primary IncRNAs
processing into mature IncRNAs within the CNS [152].
Intriguingly, IncRNAs-151 is thought to target in various
cell cycle regulators as well as protein tyrosine kinase 2
(focal adhesion kinase), which is a non-receptor tyrosine
kinase involved in integrin and growth factor signaling
pathways. The pathways aredifferentially regulated after
middle cerebral artery occlusion and implicated in
modulating neurite outgrowth, neuronal plasticity, and
restoration of neural network integrity within the ischemic
penumbra [153-155]. Furthermore, IncRNADQ786243
makes effects on regulating the expression of CREB
and Foxp3, consequently with the regulation of T regu-
lator cells in Crohn’s disease [156].

Enhancer-like activity of IncRNAs

Enhancer-associated (elncRNA) and promoter-associated
(pIncRNA) elements play different roles in the chromatin
status at intergenic IncRNAs transcription [157]. Expres-
sion of elncRNAs, but not plncRNAs, is associated with
enhanced expression of neighboring protein-coding genes
during erythropoiesis [157].

LncRNAs are dynamically expressed during erythro-
poiesis with epigenetic regulation. And they are targeted
by key erythroid transcription factors such as GATAI,
TAL1 and KLF1. After exploring 12 candidate IncRNAs,
they were nuclear-localized, exhibiting complex develop-
mental expression patterns. Depleting them severely
impaired erythrocyte maturation, inhibiting cell size
reduction and subsequent enucleation. IncRNA-EC7 is
transcribed from an enhancer and is specifically needed
for activation of the neighboring gene encoding BAND
3 [158].

Recently, researchers have identified a translational regu-
latory IncRNA (trlncRNA) through genome-wide compu-
tational analysis. Furthermore, they found trlncRNA was
upregulated in paired clinical breast cancer primary and
lymph-node metastasis samples. Tumor invasion and
metastasis will be stimulated by its expression in vitro
and in vivo, respectively. In addition to this, trlncRNA
is involved in the down-regulation of the epithelial
marker E-cadherin by suppressing the translation of its
mRNA [159].
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The epigenetic influence on chromatin from IncRNAs
Cellular reprogramming is known to accompany cell
type-specific epigenetic alterations of the genome. It is
the conversion of one specific cell type to another. Chro-
matin structure and dynamics can be influenced by epi-
genetic factors such as covalent histone modifications,
histone variants, DNA methylation, ncRNAs and etc.
Chromatin remodeling complex may play an important
role in cell fate decision [160]. It has found that 28
IncRNAs are associated in cell invasiveness. It also rep-
resented the first key step for successful metastasis.
Moreover, another ncRNA (HOTAIR long ncRNA) is
able to promote cancer metastasis by inducing epigen-
etic variations in the chromatin state of cancer cells
[161]. Many tumor suppressor genes were found to carry
antisense transcripts [162]. For example, p15, a cyclin-
dependent kinase inhibitor implicated in leukemia, pos-
sesses an antisense transcript and silencing its transcription
in cis and in trans by inducing heterochromatin formation
without changing DNA methylation in a Dicer-independent
manner [163-166]. It is possible that these antisense tran-
scripts directly bind and recruit chromatin-modifying com-
plexes to their associated sense transcripts [167]. The role of
non-coding RNAs in chromatin formation has also been ob-
served in plants [168,169]. One study found that targeted 3
prime processing of a non-coding antisense transcript to the
FLC gene (a major floral repressor gene), resulting in the re-
cruitment of FLD. It is a homolog of the human histone
demethylase LSD1, which targets H3K4me2 for demethyal-
tion [170]. Antisense mediated chromatin modifications ap-
pear to mostly operate in cis in contrast to lincRNAs which
can operate both in cis and in trans [171,172].

The human body is composed of hundreds of distinct
cell types. There is a specific position for each cell within
the body and each cell performs a specific function.
Since all the cells within a multi-cellular organism con-
tain the same genome, the information that inducing
cells to establish their identity is likely to be coded in
their epigenome [173]. The epigenome is comprised of
modifications of DNA (i.e., DNA methylation) and modi-
fications of histone proteins at specific amino acid resi-
dues (e.g., acetylation, methylation, phosphorylation, etc.)
[174]. Key regulators of the epigenome are chromatin-
modifying complexes that can add or remove covalent
modifications to chromatin [175,176]. The transcription
factors can recognize and bind to specific DNA sequences.
In contrast to transcription factors, the majority of
chromatin-modifying complexes do not able to binding
DNA [177]. A major gap in our understanding of epi-
genetic regulation for chromatin-modifying complexes
is how these complexes are targeted to specific regions
of the genome. Recent studies have recently shown
that the Jumanji protein Jarid2 could recruit the poly-
comb repressive complex (PRC)2 to its target sites in



Cao Biological Procedures Online 2014, 16:11
http://www.biologicalproceduresonline.com/content/16/1/11

mouse embryonic stem cells. However, it showed a low
expression in differentiated cells. Therefore, it is not
clear how PRC2 is targeted to its genomic sites in other
cell types [178]. Also, there is a plethora of chromatin-
modifying complexes without DNA binding protein part-
ners to guide them to their action sites [179,180].

Similarly, several large IncRNAs transcribed antisense
of protein-coding genes and they can also interact with
chromatin modifying complexes and affect the landscape
of chromatin [181,182]. For example, the antisense tran-
script to the Igf2r gene is known as Air and it is required
for the allele-specific silencing of several genes in the
mouse placenta. The gene functions through direct inter-
action with the repressive histone methyltransferase G9a
[91,183]. Similarly, there is a nuclear retained antisense
transcript in Kenql gene (Kenglotl). It associates in a
tissue-specific manner with the Chromatin complexes
G9a and PRC2 and several protein-coding genes within a
1 Mb region in cis will be repressed [31,97] (Figure 5).

LncRNAs with epigenetic regulation

The mRNA of BCL2 will be negatively regulated by the
miR-15a/16-1 group [184]. As an anti-apoptotic gene in
cancer, the frequent down-regulation of BCL2 suggests
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that the failure to induce apoptosis may be reason of
melanoma development [185].

LncRNAs play critical roles in epigenetic modulation
of chromatin structure by regulating key genes in spe-
cific cancerous cells [186,187]. Distinct chromatin signa-
tures are associated with IncRNAs encoding genes, and
these signatures are demonstrably different in cancer
cells, such as in colorectal carcinoma [188]. It found that
the expression of elncRNA, instead of plncRNA, was
associated with enhanced expression of neighboring
protein-coding genes during erythropoiesis [157]. The
regulation of IncRNA gene maternally encoded gene 3
by miR-29 and modulating the corresponding chroma-
tin structures in hepatocellular carcinoma cells [189].
DNMT-3A and DNMT-3B are direct targets of miR-
29. It makes effects indirectly through the latter’s influ-
ences on DNMT gene expression [190,191]. What is
more, over-expressed IncRNAs can be potentially served
as a required component of castration-resistance in pros-
tatic tumors with Chromatin remodeling proteins such as
Bmil, Ring2 and Ezh2 [192,193].

The significance of epigenetic regulation of IncRNAs
in human melanoma cells is increasing with more evi-
dence [115,192]. LncRNAs was widely studied in such
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cancers as melanoma, colorectal, head and neck cancer
[183]. And LncRNAs clusters were differentially expressed
in ovarian cancer cells with varying metastatic potentials.
4,956 IncRNAs have been detected in the microarray, 583
and 578 IncRNAs were upregulated and down-regulated,
respectively. Seven of the analyzed IncRNAs (MALAT]I,
H19, UCA1, CCAT1, LOC645249, LOC100128881, and
LOC100292680) confirmed the deregulation found by
microarray analysis. LncRNAs play a partial or key role
in epithelial ovarian cancer metastasis [194].

Conclusions and future directions
IncRNAs function make effects in many biological and
pathological processes such as stem cell pluripotency,
neurogenesis, oncogenesis and etc. In this review, it has
focused on the functional roles of IncRNAs in epigenet-
ics and summarized related research progress.
Reasoning, primary ncRNA precursor chains have a
high frequency of nonsense codons in their short and
highly interrupted ‘reading frames’. In addition, they will
never be translated into proteins because they are too
short. However, they may be associated with proteins
that detect nonsense codons within a reading frame.
Thus, distinct forms of chromatin proteins may make ef-
fects through protein—protein contacts via the nonsense-
mediated decay complex proteins. It might be able to
organize in genes encoding ncRNA or IncRNAs. Chroma-
tin will also be associated with a variety of other RNA
binding proteins. In principle, ncRNAs could exert regula-
tory effects on the chromatin through their association
with any of these proteins. Thus, much more exploratory
work is needed in these fields.It was indicated that several
ncRNAs are functional and not just ‘transcriptional noise’
as has been previously speculated. To the early geneticists,
a ‘gene’ was a very abstract entity. It was only considered to
reflect the way phenotypes were observed when transmit-
ted between generations. Today, however, it is dispensable
to re-evaluate the way for classifying ‘gene’ and genomic re-
gions of apparently ‘gene poor’. It may produce important
transcripts. All these will need to be tested with various
methods for proving its clinical linkage to diseases.
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