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Abstract

The wide application of next-generation sequencing (NGS), mainly through whole genome, exome and
transcriptome sequencing, provides a high-resolution and global view of the cancer genome. Coupled with
powerful bioinformatics tools, NGS promises to revolutionize cancer research, diagnosis and therapy. In this paper,
we review the recent advances in NGS-based cancer genomic research as well as clinical application, summarize
the current integrative oncogenomic projects, resources and computational algorithms, and discuss the challenge
and future directions in the research and clinical application of cancer genomic sequencing.
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Introduction

Sanger sequencing has dominated the genomic research for
the past two decades and achieved a number of significant
accomplishments including the completion of human
genome sequence, which made the identification of single
gene disorders and the detection of targeted somatic muta-
tion for clinical molecular diagnostics possible [1,2]. Despite
Sanger sequencing's accomplishments, researchers are
demanding for faster and more economical sequencing,
which has led to the emergence of “next-generation”
sequencing technologies (NGS). NGS’s ability to produce
an enormous volume of data at a low price [3,4] has
allowed researchers to characterize the molecular landscape
of diverse cancer types and has led to dramatic advances in
cancer genomic studies.

The application of NGS, mainly through whole-genome
(WGS) and whole-exome technologies (WES), has pro-
duced an explosion in the context and complexity of cancer
genomic alterations, including point mutations, small inser-
tions or deletions, copy number alternations and structural
variations. By comparing these alterations to matched nor-
mal samples, researchers have been able to distinguish two
categories of variants: somatic and germ line. The Whole
transcriptome approach (RNA-Seq) can not only quantify
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gene expression profiles, but also detect alternative splicing,
RNA editing and fusion transcripts. In addition, epigenetic
alterations, DNA methylation change and histone modifica-
tions can be studied using other sequencing approaches
including Bisulfite-Seq and ChIP-seq. The combination of
these NGS technologies provides a high-resolution and
global view of the cancer genome. Using powerful bioinfor-
matics tools, researchers aim to decipher the huge amount
of data to improve our understanding of cancer biology and
to develop personalized treatment strategy. Figure 1 shows
the workflow of integrating omics data in cancer research
and clinical application.

Cancer research

In the last several years, many NGS-based studies have
been carried out to provide a comprehensive molecular
characterization of cancers, to identify novel genetic altera-
tions contributing to oncogenesis, cancer progression and
metastasis, and to study tumor complexity, heterogeneity
and evolution. These efforts have yielded significant
achievements for breast cancer [5-12], ovarian cancer [13],
colorectal cancer [14,15], lung cancer [16], liver cancer [17],
kidney cancer [18], head and neck cancer [19], melanoma
[20], acute myeloid leukemia (AML) [21,22], etc. Table 1
summarizes the recent advances in cancer genomics
research applying NGS technologies.
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Figure 1 The workflow of integrating omics data in cancer research and clinical application. NGS technologies detect the genomic,
transcriptomic and epigenomic alternations including mutations, copy number variations, structural variants, differentially expressed genes, fusion
transcripts, DNA methylation change, etc. Various kinds of bioinformatics tools are used to analyze, integrate, and interpret the data to improve
our understanding of cancer biology and develop personalized treatment strategy.

Discovery of new cancer-related genes

Cancer is primarily caused by the accumulation of genetic
alterations, which may be inherited in the germ line or
acquired somatically during a cell’s life cycle. The effects of
these alterations in oncogenes, tumor suppressor genes or
DNA repair genes, allows cells to escape growth and regu-
latory control mechanisms, leading to the development of a
tumor [23]. The progeny of the cancer cell may also
undergo further mutations, resulting in clonal expansion
[24]. As clonal expansion continues, clones eventually
become invasive to its surrounding tissue and metastasize
to distant areas from the primary tumor [25].

The sequencing of cancer genomes has revealed a num-
ber of novel cancer-related genes, especially in breast
cancer. Recently, six papers reported their findings on
large breast cancer dataset: TCGA performed exome
sequencing on 510 samples from 507 patients [5], Banerji
et al. conducted exome sequencing on 103 samples and
whole genome sequencing on 17 samples, Ellis et al. did
exome sequencing on 31 samples and whole genome
sequencing on 46 samples [7], Stephens et al. applied
exome sequencing on 100 samples, Shah et al. performed
whole genome/exome and RNA sequencing on 65
and 80 samples of triple-negative breast cancers [11],

and Nik-Zainal et al. performed whole genome sequencing
on 21 tumor/normal pairs [12]. Besides confirming
recurrent somatic mutations in TP53, GATA3 and
PIK3CA, these studies discovered novel cancer-related
mutations. Although novel mutations occur at low
frequency (less than 10%), mutations of specific genes
are enriched in the subtype of breast cancers and
could be grouped into cancer-related pathways. For
example, mutations of MAP3K1 frequently occur in
luminal A subtype [5,7]. Pathways involving p53, chroma-
tin remodeling and ERBB signaling are overrepresented in
mutated genes [11]. Furthermore, some mutations
indicate therapeutic opportunities such as the mutant
GATA3, which might be a positive predictive marker
for aromatase inhibitor response [7].

Genomic sequencing has also helped characterize the
mutation profile of colorectal cancer. For example,
exome sequencing performed on 72 tumor-normal pairs
identified 36,303 protein-altering somatic mutations.
Further analysis for significantly mutated genes led to 23
candidates that included expected cancer genes such as
KRAS, TP53 and PIK3CA and novel genes such as
ATM, which regulates the cell cycle checkpoint. RNA
sequencing identified recurrent R-spondin fusions,
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Cancer Experiment Design Description ref

Colon cancer 72 WES, 68 RNA-seq, 2 WGS  Identify multiple gene fusions such as RSPO2 and RSPO3 [15]
from RNA-seq that may function in tumorigenesis

Breast cancer 65 WGS/WES, 80 RNA-seq 36% of the mutations found in the study were expressed. [11]
Identify the abundance of clonal frequencies in an epithelial
tumor subtype

Hepatocellular carcinoma 1 WGS, 1T WES Identify TSC1 nonsense substitution in subpopulation of tumor N7
cells, intra-tumor heterogeneity, several chromosomal rearrangements,
and patterns in somatic substitutions

Breast cancer 510 WES Identify two novel protein-expression-defined subgroups and novel [5]
subtype-associated mutations

Colon and rectal cancer 224 WES, 97 WGS 24 genes were found to be significantly mutated in both cancers. N4
Similar patterns in genomic alterations were found in colon and
rectum cancers

squamous cell lung cancer 178 WES, 19 WGS, 178 Identify significantly altered pathways including NFE2L2 and KEAP1 [16]

RNA-seq, 158 miRNA-seq and potential therapeutic targets

Ovarian carcinoma 316 WES Discover that most high-grade serous ovarian cancer contain TP53 [13]
mutations and recurrent somatic mutations in 9 genes

Melanoma 25 WGS Identify a significantly mutated gene, PREX2 and obtain a [20]
comprehensive genomic view of melanoma

Acute myeloid leukemia 8 WGS Identify mutations in relapsed genome and compare it to primary [21]
tumor. Discover two major clonal evolution patterns

Breast cancer 24 WGS Highlights the diversity of somatic rearrangements and analyzes [8]
rearrangement patterns related to DNA maintenance

Breast cancer 31 WES, 46 WGS Identify eighteen significant mutated genes and correlate clinical [7]
features of oestrogen-receptor-positive breast cancer with somatic
alterations

Breast cancer 103 WES, 17 WGS Identify recurrent mutation in CBFB transcription factor gene and [6]
deletion of RUNX1. Also found recurrent MAGI3-AKT3 fusion in
triple-negative breast cancer

Breast cancer 100 WES Identify somatic copy number changes and mutations in the coding [9]
exons. Found new driver mutations in a few cancer genes

Acute myeloid leukemia 24 WGS Discover that most mutations in AML genomes are caused by random [22]
events in hematopoietic stem/progenitor cells and not by an initiating
mutation

Breast cancer 21 WGS Depict the life history of breast cancer using algorithms and sequencing [12]
technologies to analyze subclonal diversification

Head and neck squamous cell 32 WES Identify mutation in NOTCH1 that may function as an oncogene [19]

carcinoma

Renal carcinoma 30 WES Examine intra-tumor heterogeneity reveal branch evolutionary tumor growth  [18]

which might potentiate Wnt signaling and induce
tumorigenesis [15]. Another example includes exome
sequencing performed on 224 tumor and normal pairs.
This study identified 15 highly mutated genes in the
hypermutated cancers and 17 in the non-hypermutated
cancers. Among the non-hypermutated cancers, novel
frequent mutations in SOX9, ARID1A, ATM and
FAM123B were detected besides the known APC, TP53
and KRAS mutations. The analysis of the mutations and
functional roles of SOX9, ARID1A, ATM and FAM123B
suggested they are highly potential colorectal cancer-
related genes. Non-hypermutated colon and rectum
cancers were found to have similar patterns in genomic
alternation. Whole genome sequencing of 97 tumors

with matched normal samples identified the recurrent
NAV2-TCF7L1 fusion [14].

Tumor heterogeneity and evolution

What makes cancer a difficult disease to conquer has
much to do with the evolution of cancer that results from
the selection and genetic instability occurring in each
clone, leading to heterogeneity in tumors [26]. This idea
was first proposed by Peter Nowell in 1976 as the clonal
evolution model of cancer, which attempted to explain the
increase in tumor aggressiveness over a period of time.
Further work by other researchers in the 1980s supported
this theory with studies of metastatic subclones from a
mouse sarcoma cell line [26].
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The wide application of NGS has revealed substantial
insights into tumor heterogeneity and tumor evolution.
Variations between tumors are referred to as intertumor
heterogeneity, while variations within a single tumor are
intratumor heterogeneity. Intertumor heterogeneity is
recognized by different morphological phenotype, expres-
sion profiles and mutation and copy number variation pat-
terns, categorizing tumors into different subtypes [27-31].
The mRNA-expression subtype was found to be associated
with somatic mutation landscapes in the recent TCGA and
Eillis et al’s studies. [5,7]. As a huge amount of somatic
mutations generated by NGS, the picture emerges like that
individual tumor is unique, each containing distinct
mutation patterns. For instance, Stephens et al. found
that there were 73 different combination possibilities
of mutated cancer genes among the 100 breast cancers [9].

Intratumor heterogeneity can be recognized as non-
identical cellular clones or subclones within a single tumor,
indicating different histology, gene expression, and meta-
static and proliferative potential. The ability to generate
high-resolution data makes NGS a particularly useful tool
for studying intratumor heterogeneity. A recent NGS-based
study on renal cell carcinoma from four patients has
successfully illuminated intratumor heterogeneity [18]. For
patient 1, the pre-treatment samples of the primary tumor
and chest-wall metastasis went through exon-capture
multi-region sequencing on DNA. Of the 128 validated
mutations found in 9 regions of the primary tumor, 40 were
ubiquitous, 59 were shared by some regions, and 29 were
unique to specific regions, showing that genetic hetero-
geneity exists within a tumor and an “ongoing regional
clonal evolution” [18]. Most importantly, the study showed
that a single biopsy of a tumor only reveals a small part of a
tumor’s mutational landscape; from a single biopsy, about
55% of all mutations were detected in this tumor and 34%
were shared by most regions of the tumor.

The ongoing and parallel evolution of cancer cells may
establish and maintain intratumor heterogeneity. For
example, phylogenetic relationships of the tumor regions in
patient 1 and 2 by the renal cell carcinoma study revealed a
branching rather than linear evolution of the tumor [18].
Studies have also shown branching structures of evolution
in breast cancer [26]. According to the “Trunk-Branch
Model of Tumor Growth” [26], there are somatic events
that promote tumor growth, which represents the trunk of
the tree in the early stage of tumor development. These
somatic aberrations would most likely be ubiquitous at this
stage. Over time, other somatic events, known as drivers,
cause tumor heterogeneity to occur, which causes
branching to take place in tumors as well as in metastatic
sites. Later, these branches will evolve and become more
isolated, resulting in a ‘Bottleneck Effect’ that can result in
chromosomal instability, allowing further expansion of
tumor heterogeneity [26]. This leads to the tumor’s ability
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to adapt and survive in changing environments, which
affects the success of drug treatment [18]. Therefore,
it is important to examine tumor clonal structure and
identify common mutations located in the trunk of
the phylogenetic tree, which may help understand target
therapy resistance and discover more robust therapeutic
approaches.

Clinical application

Besides allowing researchers to understand mutations in
cancer, NGS has already been applied to the clinic in many
areas including prenatal diagnostics, pathogen detection,
genetic mutations, and more [32]. Although genetic muta-
tions have been identified with Sanger sequencing, PCR,
and microarrays in clinical application, these three have
limitations that don’t apply to NGS. For example, although
microarrays can detect single nucleotide variants (SNVs),
they have trouble identifying larger DNA aberrations, e.g.,
large indels and structural rearrangements, which are
common in cancer. In contrast, whole exome and whole-
genome sequencing can provide the clinician a comprehen-
sive view of the DNA aberrations, genetic recombination,
and other mutations [28,32]. Therefore, NGS platforms
serve as a good diagnostic and prognostic tool and help
clinicians identify specific characteristics in each patient,
paving the road towards personalized medicine.

NGS has already been applied in the clinic for cancer
diagnosis and prognosis. For example, whole genome
sequencing identified a novel insertional fusion that
created a classic bcr3 PML-RARA fusion gene for a
patient with acute myeloid leukemia and the findings
altered the treatment plan for the patient [33]. By
sequencing the tumor genome of a patient, clinicians
are able to design patient-specific probes that uses
DNA in the patient’s blood serum to monitor the
progress of a patient’s treatment and detect for any
signs of relapse [27-31]. The discovery of more biomarkers
and the development of target-therapies will be essential
in helping a clinician choose the best personalized
treatment for his or her patients.

There has also been a dramatic increase in the number
of clinical trials using NGS technologies since 2010
(Table 2). Ranging from WGS and WES to RNA-seq and
targeted sequencing, clinical trials are using NGS to find
genetic alterations that are the drivers of certain diseases
in patients and apply that knowledge into the practice of
clinical medicine. The information gained from these
studies may help with drug development and explain the
resistance of certain treatments.

Methods and resources

Pipeline and tools for NGS data analysis

To analyze and interpret the increasing amount of
sequencing data, a number of statistical methods and
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Table 2 Active cancer studies using NGS as the primary outcome measure

Study Title/Sponsor NCT#/# Enrolled/ Condition Description Sequencing

Start Date

Technologies

Tumor Specific Plasma DNA in Breast Cancer/
Dartmouth-Hitchcock Medical Center

NCT01617915/6/
October 2012

Breast Cancer

Analyze chromosomal rearrangements
and genomic alterations

Whole Exon Sequencing of Down Syndrome ~ NCT01507441/10/ Leukemia Examine DNA samples of patients

Acute Myeloid Leukemia/Children’s Oncology ~ February 2012 with Leukemia and Down Syndrome

Group and identify DNA alterations

Studying Genes in Samples From Younger NCT01528956/10/ Adrenocortical Study genes from patients with

Patients with Adrenocortical Tumor/Children’s  February 2012 Carcinoma adrenocortical tumor

Oncology Group

Feasibility Clinical Study of Targeted and NCT01345513/ Solid Tumors  Identify gene mutations in cancer

Genome-Wide Sequencing/University Health 150/March 2011 patients

Network, Toronto

An Ancillary Pilot Trial Using Whole Genome ~ NCT01443390/10/ Advanced Investigate patients with cancer that

Sequencing in Patients with Advance September 2011 Cancer are using Phase | drugs and its effect

Refractor Cancer/Scottsdale Healthcare on the patient

Cancer Genome Analysis/Seoul National NCT01458604/ Malignant Identify and analyze genetic

University Hospital 100/August 2011 Tumor alterations in tumors for therapeutic
agents

RNA Biomarkers in Tissue Samples From NCT01229124/20/ Leukemia Analyze tissue samples and identify

Infants with Acute Meyloid Leukemia/
Children’s Oncology Group

Molecular Analysis of Solid Tumors/St. Jude
Children’s Research Hospital

Deep Sequencing of the Breast Cancer
Transcriptome/University of Arkansas

October 2010

NCT01050296/
360/January 2010

NCT01141530/30/
Sept 2009

Pediatric Solid

Tumors

Breast Cancer

biomarkers from RNA

Analyze gene expression profiles of
tumor and examine genetic
alterations

Examine transcriptional regulation and
triple negative breast cancer

Whole genome
sequencing

Whole exome
Sequencing

Whole genome
Sequencing

Whole genome
sequencing

Whole genome
Sequencing

Targeted Sequencing,
whole exome sequencing

and RNA-seq
RNA-seq

Whole genome
Sequencing

RNA-seq

bioinformatics tools have been developed. For WGS and
WES, the analysis generally includes read alignment, variant
detection (point mutation, small indels, copy number
variation and structural rearrangement) and variant
functional prediction (Table 3). Reads are mapped back to
the human reference genomes using MAQ [34], BWA
[35,36], Bowtie2 [37], BFAST [38], SOAP2 [39],
Novoalign/NovoalignCS, SSAHA2 [40], SHRIMP [41],
etc. These methods differ in their computational effi-
ciency, sensitivity and ability to accurately map noisy
reads, to deal with long or short reads and pair-end reads.
Having aligned the reads to the genome, mutation calling
identifies the sites in which at least one of the bases differs
from a reference sequence by GATK [42], SAMtools [43],
SOAPsnp [44], SNVMix [45], Varscan [46], etc. Differing
in the underlying statistical models, the performances of
these methods are comparable and vary on sequencing
depths [47-49]. Detecting somatic mutation involves
mutation calling in paired tumor-normal DNA, coupled
with comparison to the reference. A naive somatic muta-
tion caller applies standard calling tools on the normal
and tumor samples separately and then selects mutations
detected in tumor but not in normal. Alternatively, a
complicated caller jointly analyzes tumor-normal pair
data such as Varscan2 [50], Somaticsniper [51] and
JointSNVMix [52]. SIFT [53], PolyPhen [54], CHASM
[55] and ANNOVAR [56] have been developed to

understand the impact of the mutations on gene function
and to distinguish between driver and passenger mutations.
For WGS, various kinds of structural variations can be
discovered using BreakDancer [57], VariationHunter [58],
PEMer [59] and SVDetect [60]. RNA-seq data analysis
generally includes reads alignment, gene expression
quantification, differentially expressed genes/isoforms
or alternative splicing detection and novel transcripts
discovery (Table 4). There are two major approaches
to map RNA-seq reads. One is to align reads to the
reference transcriptome using standard DNA-seq
reads aligner. The alternative is to map reads to the
reference genome allowing for the identification of novel
splice junctions using a RNA-seq specific aligner, such as
TopHat [61], MapSplice [62], SpliceMap [63], GSNAP
[64], and STAR [65]. Having aligned reads, expression
values are quantified by aggregating reads into counts and
differential expression analysis is performed based on
counts (DEseq [66],edgeR [67]) or FPKM/RPKM values
(CuffLinks [68,69]). Estimating isoform-level expression is
very difficult since many genes have multiple isoforms and
most reads are shared by different isoforms. To deal with
read assignment uncertainty, Alexa-seq [70] counts only
the reads that map uniquely to a single isoform, while
Culfflinks [68,69] and MISO [71] construct a likelihood
model that best explains all the reads obtained in the
experiment. In addition, fusion transcripts can be detected
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Table 3 Computational tools for cancer genomics

Category Program URL Ref

Alignment MAQ http://mag.sourceforge.net/ [34]
BWA http://bio-bwa.sourceforge.net/ [35,36]
Bowtie2 http://bowtie-bio.sourceforge.net/bowtie2/ [37]
BFAST http://bfast.sourceforge.net [38]
SOAP2 http://soap.genomics.org.cn/soapaligner.html [39]
Novoalign/NovoalignCS http://www.novocraft.com/
SSAHA2 http://www.sanger.ac.uk/resources/software/ssaha2/ [40]
SHRIMP http://compbio.cs.toronto.edu/shrimp/ [41]

Mutation calling GATK http://www.broadinstitute.org/gatk/ [42]
Samtools http://samtools.sourceforge.net/ [43]
SOAPsnp http://soap.genomics.org.cn/soapsnp.html [44]
SNVmix http://compbio.bccre.ca/software/snvmix/ [45]
VarScan http://varscan.sourceforge.net/ [46,50]
Somaticsniper http://gmt.genome.wustl.edu/somatic-sniper/ [51]
JointSNVMix http://compbio.bccre.ca/software/jointsnvmix/ [52]

SV detection BreakDancer http://breakdancer.sourceforge.net/ [57]
VariationHunter http://variationhunter.sourceforge.net/ (58]
PEMer http://sv.gersteinlab.org/pemer/ [59]
SVDetect http://svdetect.sourceforge.net/ [60]

Function effect of mutation SIFT http://siftjcvi.org/ (53]
CHASM http://wiki.chasmsoftware.org [55]
PolyPhen-2 http://genetics.owh.harvard.edu/pph2/ [54]
ANNOVAR http://www.openbioinformatics.org/annovar/ [56]

Source: www.clinicaltrials.gov.

using SOAPfusion, TopHat-Fusion [72], BreakFusion [73],
FusionHunter [74], deFuse [75], FusionAnalyser [76], etc.
To obtain a more complete view of cancer genome,
an integrative approach to study diverse mutations,
transcriptomes and epigenomes simultaneously on the
pathways or networks is much more informative and
promising. A growing number of pathway-oriented tools
is now becoming available, including PARADIGM [77],
NetBox [78], MEMo [79], CONEXIC [80], etc.

Comprehensive cancer projects and resources

The vast amount of oncogenomics data are generated from
large scale collaborative cancer projects (Table 5). The
Cancer Genome Atlas (TCGA) and International Cancer
Genome Consortium (ICGC) are the two largest represen-
tatives of such coordinated efforts. Beginning as a three-
year pilot in 2006, TCGA aims to comprehensively map
the important genomic changes that occur in the major
types and subtypes of cancer. TCGA will examine over
11,000 samples for 20 cancer types (http://cancergenome.
nih.gov/). ICGC launched in 2008 and its goal is ‘to obtain
a comprehensive description of genomic, transcriptomic

and epigenomic changes in 50 different tumor types and/
or subtypes which are of clinical and societal importance
across the globe’(http://icgc.org/icgc). The Cancer Genome
Project (CGP) has many efforts at the Sanger Institute and
aims to identify sequence variants/mutations critical in the
development of human cancers (http://www.sanger.ac.uk/
genetics/CGP/). The NCI's Cancer Genome Anatomy
Project (CGAP) seeks to determine the gene expression
profiles of normal, precancer and cancer cells, leading even-
tually to improved detection, diagnosis and treatment for
the patient (http://cgap.ncinih.gov/). Recently, the Clinical
Proteomic Tumor Analysis Consortium (CPTAC) has
launched to systematically identify proteins that derive from
alterations in cancer genomes using proteomic technologies
(http://proteomics.cancer.gov/). The combination of
genomic and proteomic initiatives is anticipated to
produce a more comprehensive inventory of the detectable
proteins in a tumor and advance our understanding
of cancer biology.

The data and the results from these projects are freely
available to the research community (Table 5). A number
of databases and frameworks have been developed to make
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Table 4 Computational tools for cancer transcriptomics
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Category Program URL ref
Spliced alignment TopHat http://tophat.cbcb.umd.edu/ [61,69]
MapSplice http://www.netlab.uky.edu/p/bioinfo/MapSplice [62]
SpliceMap http://www stanford.edu/group/wonglab/SpliceMap/ (63]
GSNAP http://research-pub.gene.com/gmap/ [64]
STAR http://gingeraslab.cshl.edu/STAR/ [65]
Differential expression CuffDiff http://cufflinks.cbch.umd.edu/ [68,69]
EdgeR http://www.bioconductor.org/packages/2.11/bioc/html/edgeR.html [67]
DESeq http://www-huber.embl.de/users/anders/DESeq/ [66]
Myrna http://bowtie-bio.sourceforge.net/myrna/index.shtml [81]
Alternative splicing CuffDiff http://cufflinks.cbcb.umd.edu/ [68,69]
MISO http://genes.mit.edu/burgelab/miso/ [71]
DEXseq http://watson.nci.nih.gov/bioc_mirror/packages/2.9/bioc/html/DEXSeq.html [82]
Alexa-seq http//www.alexaplatform.org/alexa_seq/ [70]
Gene fusion SOAPfusion http://soap.genomics.org.cn/SOAPfusion.html
TopHat-Fusion http://tophat.cbcb.umd.edu/fusion_index.html [72]
BreakFusion http://bioinformatics.mdanderson.org/main/BreakFusion [73]
FusionHunter http://bicen-compbio.bioen.illinois.edu/FusionHunter/ [74]
deFuse http://sourceforge.net/apps/mediawiki/defuse/ [75]
FusionAnalyser http//www.ilte-cml.org/FusionAnalyser/ [76]

the data and the results easily and directly accessible. For
example, the results from CGP are collated and stored in
COSMIC [83]. The cBio Cancer Genomics Portal, contai-
ning dataset from TCGA and published papers, is specifi-
cally designed to interactively explore multidimensional
cancer genomics data, including mutation, copy number
variations, expression changes (microarray and RNA-seq),
DNA methylation values, and protein and phosphoprotein
levels [84]. Intogen is also a framework that facilitates the
analysis and integration of multimensional data for the
identification of genes and biological modules critical in
cancer development [85]. The Broad GDAC Firehose,
designed to coordinate the various tools utilized by TCGA,
provides level 3 and level 4 analyses and enables
researchers to easily incorporate TCGA data into their
projects. Table 5 also includes resources useful for cancer
research but not built on NGS data, e.g., Progenetix [86].

Challenges and perspective

Although NGS has already helped researchers discover a
plethora of information in the field of cancer, challenges
in translating the large amounts of oncogenomics data
into information that can be easily interpretable and
accessible for cancer care still lie ahead. From a computa-
tional point of view, many technical and statistical issues
remain unsolved. For example, repetitive DNA represents
a major obstacle for the accuracy of read alignment and
assembly, as well as structure variation detection [87].

Furthermore, it is difficult to distinguish rare mutations in
tumor from sequencing and alignment artifacts, especially
when a tumor has low purity. Despite new methods to
comprehensively catalogue genomic variants, the predic-
tion of their functional effect and the identification of
disease-causal variants are still in an early phase [88].
Current algorithms for quantifying isoform expression are
not computationally trivial and are incredibly difficult to
explain. Although the concept of integrative analysis is not
new, predictive networks or pathway models that combine
various omics data are still underway. Most importantly,
since sequencing technologies and methodologies are both
evolving rapidly, it is a difficult challenge to store, analyze
and present the data in a method that is transparent and
reproducible [89]. On the other hand, tumor complexity
and heterogeneity make the analysis and the interpretation
of sequencing data even harder. Heterogeneity is dynamic
and evolves over time. This challenges the simple notion of
binning mutations as tumorigenesis ‘driver’ and neutral
‘passenger, since some passengers are also drivers just
waiting for the right context [90].

From a clinical point of view, a major challenge is to
assess genomic variants as potential therapeutic targets.
Although many diverse variants are demonstrated to
converge on similar deregulated pathways, there is still a
lack of pathway-targeted therapies. With the discovery
of intra-tumor heterogeneity, questions have been raised
about how well a glimpse of a tumor’s genomic


http://www.sanger.ac.uk/genetics/CGP/cosmic
http://tophat.cbcb.umd.edu/
http://www.netlab.uky.edu/p/bioinfo/MapSplice
http://www.stanford.edu/group/wonglab/SpliceMap/
http://research-pub.gene.com/gmap/
http://gingeraslab.cshl.edu/STAR/
http://cufflinks.cbcb.umd.edu/
http://www.bioconductor.org/packages/2.11/bioc/html/edgeR.html
http://www-huber.embl.de/users/anders/DESeq/
http://bowtie-bio.sourceforge.net/myrna/index.shtml
http://cufflinks.cbcb.umd.edu/
http://genes.mit.edu/burgelab/miso/
http://watson.nci.nih.gov/bioc_mirror/packages/2.9/bioc/html/DEXSeq.html
http://www.alexaplatform.org/alexa_seq/
http://soap.genomics.org.cn/SOAPfusion.html
http://tophat.cbcb.umd.edu/fusion_index.html
http://bioinformatics.mdanderson.org/main/BreakFusion
http://bioen-compbio.bioen.illinois.edu/FusionHunter/
http://sourceforge.net/apps/mediawiki/defuse/
http://www.ilte-cml.org/FusionAnalyser/
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Table 5 Comprehensive cancer projects and resources
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Name

Description

URL

Comprehensive cancer projects

The Cancer Genome Atlas

International Cancer
Genome Consortium

Cancer Genome Anatomy
Project

Cancer Genome Project

The Clinical Proteomic
Tumor Analysis Consortium

A joint effort to accelerate our understanding of the molecular basis
of cancer through the application of genome analysis technologies

International consortium with the goal of obtaining comprehensive
description of genomic, transcriptomic, and epigenomic changes in
50 different cancer types and/or subtypes of clinical and societal
importance across the globe

Interdisciplinary program to determine the gene expression profiles of
normal, precancer, and cancer cells, leading eventually to improved
detection, diagnosis, and treatment for the patient

To identify somatically acquired sequence variants/mutations and
hence identify genes critical in the development of human cancers

A comprehensive and coordinated effort to accelerate the understanding
of the molecular basis of cancer through the application of proteomic
technologies

http://cancergenome.nih.gov/

http://icgc.org/icgc

http://cgap.nci.nih.gov/

http://www.sanger.ac.uk/genetics/CGP/

http://proteomics.cancer.gov/

http://www.sanger.ac.uk/genetics/CGP/
cosmic/

http://www.progenetix.org/cgi-bin/pgHome.
cgi
http://methycancer.psych.ac.cn/

www.intogen.org/

www.oncomine.org/

www.cbioportal.org/

Resources

COSMIC Catalogue of Somatic Mutations in Cancer

Progenetix Copy number abnormalities in human cancer from CGH experiments

MethyCancer An information resource and analysis platform for study interplay of
DNA methylation, gene expression and cancer

INtOGen Integrates multidimensional OncoGenomics Data for the identification
of genes and groups of genes involved in cancer development

Oncomine A cancer microarray database and integrated data-mining platform

cBio Provides visualization, analysis and download of large-scale cancer
genomics data sets

Firehose Provides L3 data and L4 analyses packaged in a form amenable to

immediate algorithmic analysis

UCSC Cancer Genomics

Browser genomics and its associated clinical data

Cancer Genome
Workbench

A suite of web-based tools to visualize, integrate and analyze cancer

Hosts mutation, copy number, expression, and methylation data from
a number of projects, including TCGA, TARGET, COSMIC, GSK, NCI60. It

https://confluence.broadinstitute.org/
display/GDAC/Home

https://genome-cancer.soe.ucsc.edu/

https://cgwb.nci.nih.gov/

has tools for visualizing sample-level genomic and transcription alterations

in various cancers.

landscape can steer the treatment. Currently, many clini-
cians decide a treatment based on the genetic markers
from a few biopsies. Whether these markers are over- or
under-represented in the tumor is unknown, causing the
selection of treatment to be difficult [29]. In addition to
heterogeneity, the tumor’s ability to evolve allows it to
have more opportunities to adapt and survive to various
treatments. Some researchers hope that with current
target therapies, intratumor heterogeneity will decrease
to a certain point [29] so that clinicians can then target
the non-responsive clones before a tumor re-growth and
more mutations can occur; however, choosing an appro-
priate target therapy will be a challenge. A few resear-
chers have already shown certain treatments, such as the
cytotoxic therapies, that have increased genome instabi-
lity and diversity, resulting in a faster tumor evolution
rate and, thus, heterogeneity. The fact is that this area of

cancer is understudied [26]; however, one of the key
challenges researchers must solve is identifying branched
subclones are resistant to which target therapies. More
knowledge of network medicine and the interaction
between the trunk and branch mutations may lead to
appropriate target therapies and personalized therapeutic
strategies that can prevent drug resistance and effectively
eradicate cancer [26,91].

To accelerate the rate of translating genomic data into
clinical practice, a sustained collaboration among multiple
centers and effective communication among bioinformati-
cians, statistical geneticists, molecular biologists and
physician are required. Bioinformaticians and statistical
geneticists are responsible for providing reproducible and
accurate analysis, identifying ‘drivers’ in the unstable and
evolving cancer genome and building powerful and
flexible integrative model to consider interactions among


http://cancergenome.nih.gov/
http://icgc.org/icgc
http://cgap.nci.nih.gov/
http://www.sanger.ac.uk/genetics/CGP/
http://proteomics.cancer.gov/
http://www.sanger.ac.uk/genetics/CGP/cosmic/
http://www.sanger.ac.uk/genetics/CGP/cosmic/
http://www.progenetix.org/cgi-bin/pgHome.cgi
http://www.progenetix.org/cgi-bin/pgHome.cgi
http://methycancer.psych.ac.cn/
http://www.intogen.org/
http://www.oncomine.org/
http://www.cbioportal.org/
https://confluence.broadinstitute.org/display/GDAC/Home
https://confluence.broadinstitute.org/display/GDAC/Home
https://genome-cancer.soe.ucsc.edu/
https://cgwb.nci.nih.gov/
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genomic, transcriptomic, metabolomics, proteomics
and epigenomic alterations in the context of tumor
microenvironment. Biologists interpret and confirm
the functional relevance of variants to cancer. Physicians
assess relationships of variants to cancer prognosis
and response to therapy. Appropriate infrastructure
within each research institution that integrates the
clinic for patient samples, wet lab for sequencing,
and Bioinformatics for data analysis should allow the
sequenced data to be processed efficiently, producing
results that can create effective personalized therapies
applicable to the clinic. In addition, easily accessible
and understandable databases that connect genomic
findings with clinical outcome are also required.
With these efforts and developments, NGS will
greatly potentiate genome-based cancer diagnosis and
personalized treatment strategies.
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