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Abstract

The plasticity of differentiated adult cells could have a great therapeutic potential, but at the same time, it is
characteristic of progression of serious pathological states such as cancer and fibrosis. In this study, we report
on the application of a real-time noninvasive system for dynamic monitoring of cellular plasticity. Analysis of
the cell impedance profile recorded as cell index using a real-time cell analyzer revealed its significant increase
after the treatment of prostate epithelial cells with the transforming growth factor-β1. Changes in the cell index
profile were paralleled with cytoskeleton rebuilding and induction of epithelial–mesenchymal transition and
negatively correlated with cell proliferation. This novel application of such approach demonstrated a great
potential of the impedance-based system for noninvasive and real-time monitoring of cellular fate.

Key words: real-time cell analysis, cell plasticity, epithelial–mesenchymal transition, transforming
growth factor-β1, F-actin, cytoskeleton remodeling.

1. Introduction

Thephenomenonof plasticity of differentiated adult cells could have a
great therapeutic potential, but at the same time, it is characteristic of
progression of serious pathological states. Epithelial–mesenchymal
transition (EMT) is a crucial process in embryogenesis, but it also
occurs during progression of tumors derived from epithelial cells
(for review, see (1 )). The transforming growth factor-β1 (TGF-β1)
is an important growth factor inducing remodeling of epithelial cells.
TGF-β1 induces a complex change of the gene expression profile,
which leads to the induction of cell cycle arrest, increased cell

Shulin Li (ed.), Biological Procedures Online, Volume 11, Number 1
© to the author(s) 2009
DOI: 10.1007/s12575-009-9017-9 URL: springerprotocols.com; springerlink.com

316



migration, and spreading (2–4 ). In general, determination of the
quality andquantity of remodelingof epithelial cells is a complex issue.
It usually includes quantification of expression of epithelial and
mesenchymal markers (E-cadherin, N-cadherin, and vimentin),
visualization of cytoskeletal rebuilding (F-actin), migration, and
invasive assay (wound healing and migration through Matrigel
matrix; (5 )). Conventionally, most of the approaches mentioned
are basedon a time-consuming end-point analysis of the state ofwhole
cell populations combined with advanced techniques of analysis of
individual cells with the use of flow cytometry or digital microscopic
techniques and image analysis. However, neither the episodic nor
the spatial resolution of these techniques is capable of registering very
small and fast changes in cellular morphology. Currently, label-free
and noninvasive methods based on electronic cell sensor arrays were
suggested for themonitoring of cell physiology, particularly adhesion,
spreading, and transient changes in cell morphology (6–9 ). Towidely
accept this methodological approach and to correctly and precisely
interpret data for these measurements is crucial to obtain precise
correlation with cell morphology and overall phenotype using a
relevant reference method. However, well-described models
applying this methodological approach with different cell lines and
various cell plasticity modulating conditions are missing. Here, we
showed that the impedance-based real-time cell analyzer (RTCA)
allows dynamic monitoring and quantification of cell remodeling
during TGF-β1-induced EMT in non-transformed prostate epithelial
cells. This novel application of such approach demonstrated a great
medium-throughput potential of the impedance-based system for
noninvasive and real-time monitoring of cellular fate.

2. Materials
and methods

2.1. Cells BPH-1 cells were obtained from the German Collection of
Microorganisms and Cell Cultures and cultivated in RPMI
1640, supplemented with 20% bovine fetal serum (both PAA),
5µg/ml transferrin, 5 ng/ml sodium selenite, and 5µg/ml insulin
(Invitrogen). The cell lines were cultivated in Nunc (Thermo
Fisher Scientific) cultivation dishes, flasks, and plates in a humidified
incubator at 37°C in an atmosphere of 5% CO2.

2.2. Real-time cell
impedance analysis

AceaE-plates®96were used for noninvasive real-timemeasurement
with the use of an xCELLigence RTCA SP system including RTCA
Software version 1.1 (both Roche). First, a standard background
measurement was performed using 100 μl of complete cultivation
media. BPH-1 cells were trypsinized, quantified, and seeded in
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additional 100 μl of cultivation media in a final concentration of
30,000 cells per cm2. The cells were monitored continually every
1 min in the first 45 min after the seeding and then every 1 h for a
period of 96 h. Recombinant TGF-β1 (Millipore) treatment with
various concentrations in triplicate was performed 24 h after the
seeding of the cells. Formation of contractile microfilaments was
blocked by cytochalasin B (CB), Helminthosporium dematioideum
(Calbiochem) dissolved in methanol (MeOH). The cells were pre-
treated with TGF-β1 (10 ng/ml) for 68 h and treated with CB
(10 μg/ml) for another 3 h. The cells were monitored continually
every 15 s after the CB addition. In this case, data are presented as
a normalized cell index (CI; normalized at the time of 68 h).
Cultivation of the cells and their treatment were performed under
standard conditions (37°C/5% CO2).

2.3. Cell counts The numbers of trypsinized BPH-1 cells in the culture were
determined using a Coulter Counter® ZM (Beckman-Coulter).

2.4. ATP assay Intracellular ATP was detected in BPH-1 cells by the commercial
ATP cellular kit (Biothema, Sweden). The cells were incubated
according to the experimental procedure, the supernatant was
removed, and the cells were lysed by the Somatic cell ATP releasing
reagent (Sigma-Aldrich). Then, 50μl of lysate wasmixedwith 20μl
of ATP reagent containing D-luciferin, luciferase, and stabilizers.
Intracellular ATP contents were determined using a microplate
luminometer LM-01T (Immunotech).

2.5. Fluorescent
and light microscopy

F-actin was visualized after the staining of paraformaldehyde (2%)
fixed and permeabilized BPH-1 cells with phalloidin-fluorescein
isothiocyanate (Sigma-Aldrich) using a fluorescent microscope
(Olympus IX-70, Fluoview II CCD camera). Nuclear counter-
staining was performed by using 4′,6-diamidine-2′-phenylindole
dihydrochloride (DAPI; Fluka). Cell morphologywas documented
by phase contrast on the same microscope.

2.6. Western blot BPH-1 cells were treated by various concentrations of TGF-β1 for
different time intervals and harvested in radioimmunoprecipitation
assay buffer (50 mM Tris–HCl pH7.4, 1% NP-40, 0.25% sodium
deoxycholate, 150 mMNaCl, protease inhibitor cocktail, and phos-
phatase inhibitor cocktail set II (Merck)). Protein concentration was
determined using detergent-compatible protein assay (Bio-Rad).
The cell lysates were sonicated (5 s, Sonifier® B-12, Branson
Ultrasonics Corp), spun, and mixed with 3× sodium dodecyl sulfate
(SDS) loading buffer (240 mM Tris–HCl pH6.8, 6% SDS, 0.02%
bromphenol blue, 30% glycerol, 3% β-mercaptoethanol). Equivalent
quantities of protein (20µg) were separated by SDS-polyacrylamide
gel electrophoresis and transferred onto polyvinylidene fluoride
membranes (Millipore) using established procedures. The
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membranes were blocked in Tris-buffer saline (20 mM Tris–HCl
pH7.2, 140 mM NaCl) containing 0.1% Tween 20 and 5% non-
fat milk. The levels of phosphorylated (Ser465/467) and total
Smad2, and expression of vimentin, a characteristic mesenchymal
marker, were analyzed with specific primary antibodies (Cell
Signaling and Sigma-Aldrich). Anti-β-actin (A5441) was from
Sigma-Aldrich; horseradish peroxidase-conjugated anti-mouse
IgG (#NA931) and anti-rabbit IgG (#NA934) were from GE
Healthcare. Detection of antibody reactivity was performed using
Immobilon Western HRP Substrate (Millipore). Densitometric
measurements were performed using ImageJ software (NIH)
and normalized to the expression of β-actin.

3. Results
and discussion

Data acquisition demonstrated a linear increasing of the CI values
in control cells during the time interval observed. However, this
linear trend was significantly changed by TGF-β1 in less than
12 h after the treatment in a concentration-dependent manner
(Fig. 1a). Concentrations of 1 and 10 ng/ml induced a significant
steep increase in CI values, which reached a plateau in 48 h. The
impedance-based determination is by its nature dependent on the
number of adherent cells. Thus, we compared CI determination
with the analysis of cell numbers to clarify the contribution of
changes in cell numbers and the morphological alternation of cells
to detected CI values. In parallel with the E-plates® 96, the cells
were seeded at the same density on 40 mm dishes and 4-well plates,
and treated with TGF-β1 in the same experimental design. At
various time intervals after the treatment, the numbers of trypsinized
cells were determined using a Coulter Counter simultaneously with
the determination of metabolically active viable cells based on deter-
mination of intracellular ATP in cell lysate. Our data, shown in
Fig. 1b, c, demonstrate thatTGF-β1 induced antiproliferative effects
in BPH-1 cells in a time- and concentration-dependent manner.
These trends are in negative correlation withCI values acquired with
the use of RTCA. Taken together, these data showed that the
TGF-β1 induced antiproliferative effects in BPH-1 cells are paralleled
by an increase of cell impedance.

It is a well-known fact that when stimulated with TGF-β1,
epithelial cells undergo EMT and exhibit a significant formation
of actin stress fibers that emanate from focal adhesions (10 ). In
this case, our results demonstrate the usual uncertainty of image
analysis which is limited by confluence of the cells. The control
cells reached a relatively high density after 72 h of cultivation.
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Based on the F-action visualization and cell morphology analysis,
there is no significant difference between control cells and cells treated
with 0.1 ng/ml of TGF-β1. However, it is evident that TGF-β1 at 1
and 10 ng/ml concentrations induced formation of F-actin stress
fibers and increased cell spreading (Fig. 2). These results positively
correlate with the activation of Smad-dependent signaling and
EMT by TGF-β1 (Fig. 3). Our results showed transient phosphory-
lation of Smad2 induced by both 1 and 10 ng/ml of TGF-β1, which
is followed by massive induction of vimentin expression. TGF-β1 at a

Fig. 1. The antiproliferative effect of transforming growth factor-β1 (TGF-β1) is associated with the
increase of the cell index (impedance) in BPH-1 cells. a TGF-β1 induces an increase of the cell index
(impedance) acquired with the use of an xCELLigence real-time cell analyzer system in a time- and
concentration-dependent manner. However, at the same time, TGF-β1 strongly inhibits cell prolifer-
ation quantified by counting of the cells using a Coulter Counter (b), and by ATP assay (c). The cells
were treated with various concentrations of TGF-β1 at the time marked as time zero.
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Fig. 2. The effect of transforming growth factor-β1 in BPH-1 cells is associated with remodeling of
the cytoskeleton. F-actin was visualized with the use of phalloidin-fluorescein isothiocyanate conju-
gate. The nuclei were counterstained with DAPI. Images of cellular morphology were taken under
phase contrast.
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concentration of 0.1 ng/ml did not induce vimentin expression
and only slightly induced phosphorylation of Smad2. Furthermore,
we wanted to examine the influence of formation of stress fibers
on TGF-β1-induced increase of CI values. CB, a potent inhibitor
of the formation of contractile microfilaments, induced inhibition
of F-actin formation in both control and TGF-β1-treated BPH-1
cells (Fig. 4a). This inhibition was paralleled by a rapid decrease
of normalized CI values in both groups (Fig. 4b). However, the
drop of CI values induced by CB was much stronger in the case of
TGF-β1-pretreated BPH-1 cells, with high abundance of F-actin
stress fibers in comparisonwithCB-treated control cells. These results
demonstrate that TGF-β1-induced increase of CI values is at least
partially dependent on stress fiber formation. We can summarize that
TGF-β1-induced EMT in BPH-1 cells is associated with inhibition of
proliferation, rebuilding of cytoskeleton, formation of stress fibers,
and increase of spreading. These cellular changes are associated with
a significant increase inCI values analyzed by theRTCA system.Until
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Fig. 3. Transforming growth factor-β1 induces phosphorylation of Smad2 and epithelial–mesenchymal
transition in BPH-1 cells. The cells were lysed using radioimmunoprecipitation assay buffer, sodium
dodecyl sulfate-polyacrylamide gel electrophoresis, and immunoblotting detection of p-Smad2
(Ser465/467); Smad2 and vimentin was performed. Detection of β-actin served as control of equal load-
ing. Densitometric measurements were performed using ImageJ software (NIH, Bethesda, MD, USA)
and normalized to the expression of β-actin. The bar graph represents the average optical density.
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now, most of the applications of RTCA focused on analysis of
adhesion or spreading were designed to study immediate interaction
of cells with substrate in relatively short time intervals (6, 11 ).
Here, our data suggest a novel application and a great potential of
real-time impedancemeasurement for dynamicmonitoring of cellular
remodeling and plasticity, induced after adhesion of the cells to the
substrate and formation of stress fibers in longer time intervals.
Furthermore, these measurements also show a potential misinterpre-
tation of the data in experimental setups using impedance-based
methods for the detection of cell proliferation without simultaneous
monitoring of cellular morphological changes.
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Fig. 4. Inhibition of formation of contractile microfilaments by cytochalasin B (CB) leads to a rapid drop
of cell index values. BPH-1 cells were pretreatedwith transforming growth factor-β1 (10 ng/ml) for 68 h
and treated with CB (10 μg/ml) for another 3 h. a F-actin was visualized by phalloidin-fluorescein
isothiocyanate conjugate after 3 h of CB and/or vehicle treatment. b CB induces a rapid decrease
of the normalized cell index (datawere normalized at the time of 68 h) acquiredwith the use of an xCEL-
Ligence real-time cell analyzer system. The arrow indicates the time interval of CB addition.
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