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METHODOLOGY

Establishing a rabbit model with massive 
supraspinatus tendon defect for investigating 
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Abstract 

Background Shoulder pain and disability from rotator cuff tears remain challenging clinical problem 
despite advancements in surgical techniques and materials. To advance our understanding of injury progression 
and develop effective therapeutics using tissue engineering and regenerative medicine approaches, it is cru-
cial to develop and utilize animal models that closely resemble the anatomy and display the pathophysiology 
of the human rotator cuff. Among various animal models, the rabbit shoulder defect model is particularly favored due 
to its similarity to human rotator cuff pathology. However, a standardized protocol for creating a massive rotator cuff 
defect in the rabbits is not well defined. Therefore, the objective of our study was to establish a robust and reproduc-
ible model of a rotator cuff defect to evaluate the regenerative efficacy of scaffolds.

Results In our study, we successfully developed a rabbit model with a massive supraspinatus tendon defect 
that closely resembles the common rotator cuff injuries observed in humans. This defect involved a complete tran-
section of the tendon, spanning 10 mm in length and encompassing its full thickness and width. To ensure stable 
scaffolding, we employed an innovative bridging suture technique that utilized a modified Mason-Allen suture 
as a structural support. Moreover, to assess the therapeutic effectiveness of the model, we utilized different scaf-
folds, including a bovine tendon extracellular matrix (ECM) scaffold and a commercial acellular dermal matrix (ADM) 
scaffold. Throughout the observation period, no scaffold damage was observed. Notably, comprehensive histologi-
cal analysis demonstrated that the regenerative tissue in the tendon ECM scaffold group exhibited an organized 
and aligned fiber structure, indicating tendon-like tissue regeneration while the tissue in the ADM group showed 
comparatively less organization.

Conclusions This study presents a comprehensive description of the implemented procedures for the development 
of a highly reproducible animal model that induces massive segmental defects in rotator cuff tendons. This proto-
col can be universally implemented with alternative scaffolds to investigate extensive tendon defects and evaluate 
the efficacy of regenerative treatments. The application of our animal model offers a standardized and reproducible 
platform, enabling researchers to systematically evaluate, compare, and optimize scaffold designs. This approach 
holds significant importance in advancing the development of tissue engineering strategies for effectively repairing 
extensive tendon defects.
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Background
 Rotator cuff tendinopathy and tears are a significant 
cause of shoulder pain and disability. Among these tears, 
the supraspinatus tendon is particularly susceptible, with 
a prevalence of 61.9% in men and 38.1% in women [1]. 
Massive rotator cuff tears involving multiple tendons, 
full-thickness tears larger than 5  cm, or significant ten-
don retraction [2], represent a substantial proportion of 
all rotator cuff injuries (40%) and recurrent tears (80%) 
[3]. These extensive injuries often result in reduced 
strength, limited range of motion (ROM), and debilitat-
ing pain. Generally, treatment strategies involve surgical 
repair for younger physically active patients and older 
patients who do not respond to conservative treatment 
[4]. However, despite advances in surgical techniques and 
materials, retear rates remain high, ranging from 40 to 
90% [5]. There is thus a need to improve biological aug-
mentation strategies to enhance tendon healing and min-
imize postoperative degeneration.

With advancements in tissue engineering, tissue scaf-
folds have emerged as a promising approach to augment 
rotator cuff repair by providing both mechanical support 
and favorable biological properties for tendon healing 
[4]. To evaluate the efficacy of these scaffolds and facili-
tate translation to clinical applications, rigorous in  vivo 
assessments in preclinical animal shoulder models that 
simulate human anatomy, physiology, and pathology are 
essential. Among the available animal models, the rabbit 
shoulder model is preferred due to its close resemblance 
to human rotator cuff pathology. Previous studies on 
rotator cuff tears in rabbits have indicated similar chronic 
changes to those observed in human patients, including 
muscle atrophy and fatty infiltration [6]. More impor-
tantly, the larger size of rabbit allows for more accurate 
and reproducible tendon defects compared to other com-
monly used animal models like rats and mice, and can be 
performed using standard surgical techniques and equip-
ment [7].

Furthermore, the design of the rotator cuff defect 
model is important and involves several key considera-
tions, including selection of appropriate animal model 
(e.g., tendon defect site and size) and the strategy for 
scaffold implantation (e.g., the suturing technique, scaf-
fold implantation method). Currently, there is no estab-
lished standardized protocol for producing a massive 
rotator cuff defect in the rabbit model. Past studies have 
employed different approaches regarding tendon choice 
[6, 8–10], defect lengths [10–12], and locations along 
the tendon. Moreover, multiple techniques exist for scaf-
fold implantation (e.g., augmentation and bridging) and 
suturing (e.g., Kessler’s, lock loop, Mason-Allen’s suture 
method) [13–15]. These variabilities pose challenges for 
comparative analysis. Hence, establishing a standardized 

model would enable more controlled evaluation of scaf-
fold-mediated repair.

Our objective is to develop a robust and reproducible 
model of a rotator cuff defect for evaluating the regen-
erative efficacy of scaffolds. Nonetheless, the choice of 
implantation technique is influenced by the properties 
of the scaffold itself. Thus, when using a bridging scaffold 
that is connected in series with the tendon, it is essential 
for the scaffold to transmit all pulling forces across the 
bridged tendon ends during muscle activity [16]. Con-
sequently, the scaffold needs to possess high mechanical 
strength. Considering the severity of tear, loss of tendon 
length, and the properties of the scaffold, proper bridg-
ing technique is critical for implantation. Additionally, 
proper sutures play a vital role in enabling appropriate 
force transmission, withstanding the pulling forces gen-
erated by muscle contraction, and preventing scaffold 
dislocation and gap formation under loading [17, 18]. In 
cases of simple tendon repair involving the tendon-ten-
don interface, gaps larger than 3  mm can lead to unfa-
vorable clinical outcomes in dogs [19]. However, sutures 
can potentially interfere with the microcirculations in 
tendons [17, 20], hindering the blood supply necessary 
for the formation of fibrovascular tissues and subsequent 
regeneration [21]. Therefore, it is important to develop 
an optimal suture strategy that achieves scaffold stabi-
lization while minimizing disruption to native tendon 
healing.

This study aimed to develop a robust model of a mas-
sive supraspinatus tendon defect model in rabbits. The 
model involved a complete transection of the tendon, 
spanning 10  mm in length and encompassing the full 
thickness and width of the tendon. To repair the tendon, 
we implemented both direct suture repair and scaffold-
mediated repair utilizing two distinct scaffolds: the acel-
lular dermal matrix (ADM, a commercially available 
scaffold for tendon repair) [22] and the tendon extra-
cellular matrix (ECM) scaffold (a polyurethane scaf-
fold enriched with tendon extracellular matrix) [23]. To 
ensure optimal stability of the scaffold, we employed an 
innovative bridging suture technique that utilized a mod-
ified Mason-Allen suture as a structural support. Tendon 
healing outcomes were assessed through histological 
analyses, including Hematoxylin and Eosin (H&E) stain-
ing, Picrosirius red staining, and histological evaluation 
scores.

Materials and methods
Animals
Twelve New Zealand White rabbits (13–16 weeks old) 
with an average body weight of 4 kg were obtained from 
the Laboratory Animal Services Centre, the Chinese Uni-
versity of Hong Kong. All procedures, including rabbit 
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surgeries, were conducted using sterile surgical tech-
nique in accordance with protocol (No. 18-003-MIS) 
approved by The Chinese University of Hong Kong Ani-
mal Experimentation Ethics Committee in an appropri-
ately equipped room designated for animal surgeries.

Preparation of animals for rotator cuff surgery

1. Surgical instruments were autoclave-sterilized, and 
sterile gloves were worn throughout the procedure, 
which was carried out in a sterile operating field.

2. Anesthesia was induced in both female and male 
New Zealand White Rabbits by administering an 
intramuscular injection of a ketamine (35  mg/kg; 
Alfasan) and xylazine (5 mg/kg; Alfasan) mixture.

3. To maintain anesthesia in rabbits during the sur-
gery, a 5 ml syringe containing the ketamine (35 mg/
kg) and xylazine (5  mg/kg) mixture was prepared. 
The rabbit’s ear vein was located, and an indwelling 
needle was carefully inserted and connected to the 
syringe containing the anesthetic. The syringe was 
secured with gauze and medical tape.

4. The anesthetized rabbit was gently positioned in a 
supine position, ensuring that the surgical area faced 
upwards. The surgical area was shaved and cleansed 
by applying three alternating applications of betadine 
and 70% ethanol, applied in circular motions, starting 
from the inside and moving outward, using a cotton 
swab. Surgical drapes were placed to create a surgical 
window and maintain a sterile environment.

Isolation of the supraspinatus tendon

1. A 3 cm incision was made in the shoulder to expose 
the rotator cuff tendons. The deltoid muscle was split, 
and skin and soft tissue retractors were used to create 
a surgical window, providing a clear view of the rota-
tor cuff tissues. Acromioplasty was performed using 
a No.15 scalpel (Mingyue). Hemostasis was achieved, 
and the wound was irrigated with saline solution.

2. The supraspinatus tendon was identified and marked 
using a 3 − 0 suture (Arthrex  FiberWire®). The 
supraspinatus tendon was sutured using a lock-loop 
suturing technique before detaching it.

3. A full-thickness defect, measuring approximately 
10 × 5 mm, was created in the mid-substance of the 
supraspinatus tendon using a No.15 scalpel. The 
distance between the defect and the first lock-loop 
suture site was approximately 1–2 mm. The opposite 

end of the supraspinatus tendon was sutured using 
the lock-loop suturing method.

Implantation of the scaffold

1. To achieve a secure attachment between the scaf-
fold and the tendon, a modified Mason-Allen suture 
technique was utilized. After completing the lock-
loop suture, all subsequent sutures were positioned 
behind the lock-loop to minimize the risk of suture 
pull-out. Prior to the surgical procedure, three holes 
were created in the scaffold. The dimensions of the 
scaffold were designed to closely resemble the width 
and thickness of the native rabbit supraspinatus ten-
don.

2. The first stitch was passed through one-third of the 
tendon’s width and then secured with a knot, using 
its own suture as the initial fixation. The second 
stitch emerged behind the first stitch and connected 
to one of the scaffold’s holes, forming a stable “cross” 
structure between the first and second stitches.

3. After the suture was passed through the scaffold, 
it traversed the tendon from behind the lock-loop 
suture. At this stage, the Mason-Allen method was 
employed to tie a “cross” knot at two-thirds of the 
tendon’s length, while simultaneously connecting the 
tensioned suture to the second hole of the scaffold. 
Following the final Mason-Allen knot, an additional 
knot was tied using the suture itself at the opposing 
end of the tendon, to enhance fixation of the scaffold-
tendon connection. The same suturing technique was 
employed to secure the scaffold and tendon together 
at the other end of the tendon.

Wound closure and post‑surgery sterilization

1. After the implantation, post-surgery analgesic (0.01-
0.05 mg/kg Buprenorphine, Alfasan) was adminis-
tered subcutaneously to ensure pain relief for the 
rabbits.

2. To prevent infection, an anti-infective (20  mg/kg 
Cefalexin, Alfasan) was administered.

3. A suture (3 − 0 PGA) was used to carefully reapproxi-
mate the deltoid muscle tissue layer by layer, and the 
skin was closed with 3 − 0 silk sutures.

4. To sterilize the wound and clean up any blood, beta-
dine was applied in circular motions using a cotton 
swab, starting from the inside and moving outward.
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5. The rabbits were allowed to recover on a heating pad 
and subsequently allowed cage activity in their cages 
without immobilization.

Sample harvesting and analysis

1. At the designated time point of postoperative 1 
month, euthanasia was performed on the rabbits 
using a lethal dose of sodium pentobarbital (Alfasan), 
administered at a dosage of 60  mg/kg. Euthanasia 
was carried out in strict adherence to institutional 
animal ethics guidelines to ensure humane treatment 
of the animals.

2. The harvested samples were immediately immersed 
in a 4% (w/v) solution of paraformaldehyde (PFA, 
Sigma) for 48-hour fixation. The tissue samples 
underwent graded ethanol dehydration and were 
subsequently embedded in paraffin blocks.

3. The embedded samples were sectioned at 7 μm thick-
ness, deparaffinized and then stained with hematoxy-
lin and eosin (H&E) and Picrosirius red.

4. The stained sections were examined using bright field 
optics to visualize H&E staining or polarized optics 
for Picrosirius staining using a Nikon Ni-U Eclipse 
Upright Microscope, and images captured using a 
digital camera [Nikon, DSFi3].

5. To quantify the differences among the groups, the 
H&E-stained sections were evaluated using a semi-
quantitative histopathological scale according to a 
reported grading system [24]. Four parameters, i.e., 
cellularity, vascularization, feature of inflammation, 
and collagen alignment, were quantified using a 0–3 
grading scale: 0 (normal), 1 (slightly abnormal), 2 

(moderately abnormal), and 3 (maximally abnormal). 
The average scores were used for comparison.

Statistical analysis
All data were expressed as mean ± standard deviation 
(SEM) and compared by the Kruskal-Wallis test followed 
by post hoc pair-wise comparison using the Mann-Whit-
ney U test [25]. Statistically significant differences are 
indicated by asterisks (*, p ˂ 0.05; **, p ˂ 0.01; and ***, p ˂ 
0.001).

Results
Establishing a rabbit model of massive rotator cuff tendon 
defect
To evaluate the tendon healing efficacy of different scaf-
folds (i.e., ADM and tendon ECM scaffold), a massive 
tendon defect model was created on the supraspina-
tus tendon of New Zealand White rabbits (Fig.  1A). As 
demonstrated in Fig.  1B, the supraspinatus tendon was 
identified following a 3  cm incision in the shoulder. 
The surrounding tissue was carefully isolated, and the 
supraspinatus tendon was sutured with a lock-loop sutur-
ing technique. The suture site was positioned 1 cm apart, 
and a full-thickness defect measuring 5 mm in length was 
created between the suture sites to simulate a significant 
tendon defect (Fig. 1B). To bridge the tendon defect using 
different materials, the scaffold was implanted between 
the defect site and connected to the two tendon ends via 
a modified Mason-Allen’s suture technique (Fig.  2). To 
ensure a tight connection between tendons and scaffold, 
the combination of lock-loop suture and Mason-Allen’s 
suture method was applied. This approach ensured a 
secure connection between the tendons and the scaffold. 

Fig. 1 Schematic surgery diagram of repairing a massive rotator cuff tendon defect. A Diagram illustrating the creation of a massive rotator cuff 
tendon defects. B Representative images depicting surgical procedure steps
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The modified Mason-Allen’s suture method was per-
formed between tendon and scaffold, while the lock-loop 
suture method was employed on the tendon ends below 
the Mason-Allen’s suture knots. This design resulted in 
a tight and robust connection between the scaffold and 
tendon, significantly reducing the risk of suture pull-out.

Assessment of tendon healing outcomes using histological 
analysis
To assess the efficacy of the designed scaffold (tendon 
ECM scaffold) in comparison to a commercially avail-
able scaffold (ADM), four experimental groups were 
established: a healthy tendon control group, a group 
undergoing direct suture repair, a group undergoing 
ADM-mediated repair, and a group undergoing tendon 
ECM scaffold-mediated repair (Fig.  3A). At 1 month, 
the rabbits were euthanized, and samples were collected 
for analyses, including H&E staining, Picrosirius red 
staining, and scoring analysis. Histologically, the H&E 
staining images demonstrated that both the ADM and 
tendon ECM scaffold groups displayed complete bridg-
ing of the 1-cm tendon defect and exhibited increased 
cellularity when compared to the intact control group. 
Additionally, in comparison to the suture repair and 
ADM-mediated repair groups, the regenerative tissue in 
the tendon ECM scaffold group exhibited a more aligned 

fiber structure, indicating a greater degree of tendon-like 
tissue regeneration.

To evaluate the alignment and thickness of collagen fib-
ers, picrosirius red staining observed with polarized light 
microscopy was utilized. When viewed under polarized 
optics, the tendon ECM scaffold-mediated group exhib-
ited a more pronounced birefringence compared to both 
the suture repair and ADM-mediated repair groups. 
Additionally, the tendon ECM scaffold group displayed 
a higher abundance of orange-to-red fibers, indicating 
thicker fibers, while the suture repair and ADM-medi-
ated repair groups had a greater prevalence of yellow 
fibers, suggesting thinner fibers (Fig.  4). However, it is 
noteworthy that the fiber thickness in the tendon ECM 
scaffold-mediated groups remained lower than that 
observed in the healthy tendon group.

Additionally, to evaluate tendon healing, a grading 
system [24] was implemented to assess the levels of cel-
lularity, vascularization, inflammation, and collagen 
alignment in each group (Fig. 5A). The suture repair and 
ADM-mediated repair groups demonstrated significantly 
higher cellularity and inflammatory response, as well as 
less organized collagen, when compared to the healthy 
tendon group (Fig. 5B). In contrast, the tendon ECM scaf-
fold group exhibited no significant differences in terms of 
cellularity, vascularization, and inflammation compared 

Fig. 2 Schematic diagram illustrating the suture technique used for scaffold implantation. The highly stable implantation model was achieved 
by combining the modified Mason-Allen method with the locking loop suture method
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Fig. 3 Histological analysis using H&E staining to assess healing outcome at 1 month after surgery. A Schematic diagram illustrating 
the experimental design. B H&E analysis revealing the evaluation of tendon healing outcomes. The tendon extracellular matrix (ECM) scaffold group 
demonstrated the presence of regenerative tissue with a well-aligned structure resembling that of a healthy tendon. In contrast, in both the suture 
repair and acellular dermal matrix (ADM)-mediated repair groups, a disorganized tissue structure with increased cellularity was observed, compared 
to the organized architecture seen in the healthy tendon group

Fig. 4 Histological analysis using picrosirius red staining and polarized light microscopy to assess the healing outcome at 1 month after surgery. 
In the tendon ECM scaffold group, a distinctly wavy and more aligned ECM structure was observed, characterized by a pronounced birefringence. 
Furthermore, a more abundant presence of thicker collagen fibers was observed compared to both the suture repair and ADM-mediated repair 
groups. However, the fiber thickness in the tendon ECM scaffold group remained lower than that observed in the healthy tendon group, suggesting 
an ongoing regenerative stage at the 1-month time point
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to the healthy tendon group (Fig.  5B). However, fiber 
alignment in the healthy tendon group remained signifi-
cantly higher than that observed in all the repair groups, 
with the suture repair group displaying the least fiber 
alignment when compared to the ADM-mediated repair 
and tendon ECM scaffold repair groups (Fig. 5B).

These findings suggest that the implantation of the 
tendon ECM scaffold resulted in the formation of ten-
don-like tissue with improved organization and fiber 
thickness compared to the suture repair and ADM-
mediated repair groups. Nonetheless, it is important to 
emphasize that despite the improved alignment and fiber 
thickness observed in the tendon ECM scaffold-mediated 
group, these parameters still fell short of reaching levels 
comparable to those observed in a healthy tendon. These 
findings highlight the ongoing regenerative process of the 
regenerated tendon tissue at the 1 month post-surgery 
time point.

Discussion
 Rotator cuff injuries are a significant cause of pain, func-
tional limitation, and morbidity [26]. The high prevalence 
of rotator cuff pathologies underscores the urgency for 
the development of innovative strategies or therapeutics 

to address these conditions [26]. Animal models have 
contributed greatly to the advancements in researching 
and alleviating the burden of rotator cuff injuries, owing 
to their capacity to replicate anatomical, biomechani-
cal, cellular, and molecular aspects of the human rotator 
cuff [7]. Among animal models, rabbits are commonly 
utilized for studying rotator cuff tendon repair [7]. Com-
pared to smaller animal models such as rats and mice, 
rabbits exhibit less spontaneous tendon healing follow-
ing tendon injury [27]. Additionally, the supraspinatus 
muscle of rabbits’ experiences fatty degeneration after 
tendon detachment, which closely resembles the condi-
tion observed in humans [27]. The larger size of rabbits 
also allows for the ready use of surgical models and tech-
niques, enhancing the accuracy and reproducibility of 
experimental procedures. Similar to larger animal models 
such as goats, sheep, and dogs, rabbits possess the advan-
tages of accommodating standard-of-care surgical tech-
niques, robust mechanical loading, and scaffold-based 
repair strategies [28]. Additionally, their more upright 
posture closely resembles human anatomy compared to 
larger animals, which often have limited overhead reach-
ing abilities [28]. Moreover, rabbits offer a cost-effective 
option for research due to lower purchase and housing 

Fig. 5 Histological evaluation and grading of tendon repair on the basis of Hematoxylin and Eosin (H&E) staining. A Grading system for tendon 
healing. B Scores assigned for cellularity, vascularization, inflammation, and collagen alignment. Both the suture repair and ADM-mediated repair 
groups displayed significantly higher cellularity and inflammatory response, as well as less organized collagen, compared to the healthy tendon 
group. In contrast, the tendon ECM scaffold group exhibited no significant differences compared to the healthy tendon group regarding cellularity, 
vascularization, and inflammation. n = 3, biological replicates; mean ± SEM; *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001
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expenses [27]. To provide more specific details, we have 
summarized representative studies that utilized various 
animal models to investigate acute and chronic rotator 
cuff tears in Tables 1, 2, 3, 4, 5 and 6.

To replicate massive rotator cuff tears observed in 
humans, a 10  mm segment of the rabbit supraspinatus 
tendon was used in this study, representing approxi-
mately 50% of the total tendon length [98]. The purpose 
was to simulate tendon retraction and atrophy follow-
ing a supraspinatus tear [98]. Similar approaches have 
been employed in studies conducted by Yokoya et  al. 
and Zheng et al. [10, 12]. Different repair strategies have 
been employed. In some studies, the torn tendon was 
directly pulled back into its original position before being 
anchored with sutures, resulting in excessive tension on 
the repaired tendon [99]. This increased traction force 
during augmentation can weaken the initial fixation and 
increase the risk of retear [100]. Conversely, other studies 
completely transected the tendon without removing any 
tendon tissue and directly bridged it with a scaffold, lead-
ing to a postoperative tendon length that exceeds 150% of 
the normal length [101, 102]. However, this method may 
result in insufficient mechanical stimulation within the 
defective tendon, ultimately leading to poor functional 
recovery. In our study, we utilized scaffolds specifically 
designed to match the dimensions of the 10  mm defect 
and bridge the tendon stumps. This design allowed us to 
achieve a tension level that closely mimics a normal ten-
don in the repair construct. By employing this approach, 
our aim was to enhance the accuracy and effectiveness of 
our experimental model.

An essential aspect that influences the success of ten-
don repair is the choice of a suitable suture strategy, 
which is crucial in ensuring the stability of the scaf-
fold and preventing suture rupture or the formation of 
gaps under significant mechanical stress [103]. In our 
study, we primarily employed the modified Mason-
Allen suture method, known for its high load-to-failure 
and superior resistance to gap formation [104]. How-
ever, given the specific conditions of our repair site, the 
modified Mason-Allen suture alone was deemed insuf-
ficient. Previous literature has introduced the concept 
of incorporating a row of medial fixation that runs per-
pendicular to the tendon fibers, serving as a rip-stop 
structure [105, 106]. Consequently, we opted to utilize 
the Ford interlocking suture technique to establish a 
rip-stop barrier. This approach reinforced the modified 
Mason-Allen suture and further minimized the poten-
tial for gap formation. By combining these two suturing 
approaches, we aimed to provide immediate mechani-
cal support to the defective tendon until functional 
recovery occurs. It is worth noting that our strategy 
may result in an increased surface area of suture expo-
sure on the tendon, which could potentially promote 
adhesion formation. However, this drawback can be 
overcome by implementing passive or active mobiliza-
tion of the joint and tendon during the rehabilitative 
phase [17]. By doing so, we can effectively counterbal-
ance the potential disadvantages associated with the 
use of additional rows of interlocking stitches. Ensur-
ing the reproducibility of results in experimental ani-
mal research faces challenges [107]. The issue of poor 

Table 1 Established mouse models of tendon defect

Tendon(s) Types of model Defect procedure Repair procedure Timepoints Objectives(s) Comments

Supraspinatus tendon Acute Unilateral sharp 
release

Not specified Day 0, 7, 10, 14 Murine model 
of supraspinatus 
tendon repair [29].

Advantages:
 1. High anatomic 
similarity to humans.
 2. High 
physiological similarity 
to humans.
 3. Amenable 
to genetic manipula-
tion.
 4. Cost-effective.
 5. Easy logistic 
management.
 6. Easy to attain 
large sample size.
Disadvantages:
 1. Small size 
complicates surgical 
procedures.
 2. Robust sponta-
neous tendon healing 
potentially masks 
intervention efficacy.

Chronic Unilateral complete 
transection

Not specified Week 1, 4 Gene expression pat-
terns in the supraspi-
natus muscle 
after tear [30].

Supraspinatus 
and infraspinatus 
tendon

Chronic Unilateral complete 
transection + dener-
vation

Not specified Week 12 Mouse model of mas-
sive rotator cuff tears 
that is consistent 
with the pathophysi-
ology of human [31].

Week 2, 6 The role of Trichos-
tatin A in rotator cuff 
tear [32].

Unilateral detach-
ment + denervation

Not specified Week 1, 6, 12 Effects of knocking 
out poly(ADP-ribose) 
polymerase 1 [33].
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reproducibility in animal research primarily arises from 
biological variation and experimental design [107].

To address the challenge of biological variance, we 
selected rabbits as our animal model due to their resem-
blance to human rotator cuff pathology. Regarding 
experimental design variance, we implemented several 
measures. Firstly, we carefully selected rabbits within the 
age range of 13–16 weeks, with an average weight of 4 kg, 
to minimize the influence of age-related factors. This 
selection aimed to reduce variations associated with dif-
ferent developmental stages. While a large proportion of 
massive rotator cuff tears are reported in elderly patients, 
it is important to recognize that adolescents [108] and 
adults under 40 years old working as manual labourers 
or actively serving in the military [109] are also affected 
and experience challenges not typically observed in older 
patients. These include unsatisfactory rates of return to 
physical activity or work at preinjury levels [110]. When 
defining the biological parameters for our rabbit model, 
both age and body weight were used since innate physi-
ological and biomechanical differences in humans and 
rabbits made considerations based on age alone chal-
lenging. Specifically, the age and body weight of rabbits 
used herein was chosen to strike an appropriate balance 
for modelling both young and adult patients as 91% of 
mature adult body length is achieved 16-weeks postna-
tally while our rabbits’ mean body weight was 4 kg and 
about 90% similar to 1.5- to 2.5-year old mature adult 
rabbits [111]. Furthermore, numerous studies involving 
rabbit rotator cuff animal models have been reported 
with similar age (12–16 weeks old) [112] and body 
weights (2 to 2.5  kg [113] or 3 to 4  kg [112, 114]). Sec-
ondly, we included both male and female rabbits in the 
study to account for potential sex-based differences. 
Additionally, we provided a clear and detailed step-by-
step description, along with schematic illustrations, of 
the surgical procedure used to create a massive supraspi-
natus tendon defect in rabbits. By doing so, we aimed to 
minimize potential variations arising from diverse surgi-
cal techniques. By taking these measures to mitigate bio-
logical and experimental design variances, we aimed to 
enhance the reproducibility of our findings and promote 
consistency in future studies utilizing our model.

To assess the outcomes of tendon repair, we conducted 
histological analysis using H&E staining (bright field 
optics) and Picrosirius red staining (polarized optics). 
Additionally, we implemented a scoring system to evalu-
ate various parameters, including cellularity, vasculariza-
tion, inflammation, and collagen alignment. Our findings 
demonstrated that the group receiving scaffold implan-
tation exhibited superior healing outcomes in terms of 
collagen alignment compared to the group undergo-
ing suture repair alone. Furthermore, we observed that 

different scaffold types yielded distinct results. Specifi-
cally, the tendon ECM scaffold group showed improved 
outcomes in terms of vascularization, inflammation, and 
collagen alignment when compared to the ADM group. 
These results indicate that the healing effect is not solely 
dependent on the suture techniques employed but is also 
strongly influenced by the specific implanted scaffold 
utilized.

Our rabbit rotator cuff tear model more closely resem-
bles clinical acute rotator cuff injuries, rather than 
chronic injuries, which are more clinically predominant 
[115]. Acute rotator cuff injuries are generally defined as 
those occurring within 2 weeks to 6 months, with a “trau-
matic” onset following a shoulder trauma [116]. These 
acute injuries are commonly encountered in clinical 
orthopedics, with a reported incidence of 8% [117] and 
a prevalence of up to 40% of all rotator cuff tears [118]. 
Moreover, acute tears are a common cause of morbid-
ity in the elderly, with an estimated incidence of 2.5 per 
10,000 patients aged 40–75 years [119]. Particularly, acute 
rotator cuff tears after shoulder dislocation are particu-
larly common in older patients, with rates of 54% in those 
aged 40–87 years [120] and 49% in those aged 60–89 
years [121]. However, traumatic rotator cuff tears can 
occur in patients of all ages and lead to short- and long-
term disability if not appropriately managed [115]. A lit-
erature review found that 37.6% of rotator cuff tears were 
attributed to trauma, with the majority caused by simple 
falls [122]. For young and healthy adults, the forces dur-
ing falls can be great enough to tear even a tendon with-
out degenerative changes [122], while the risk is higher 
for the elderly due to their greater risk of falling and poor 
tendon quality [122, 123]. The commonly involved ten-
dons in acute rotator cuff tears are supraspinatus (84%), 
infraspinatus (39%), and subscapularis (78%) [26]. Inter-
estingly, a prospective study showed that 50% of patients 
initially diagnosed with full-thickness rotator cuff tears 
and receiving conservative treatment had enlargement of 
tear size after 1 year [124], suggesting the need for early 
surgical repair, which correlates with previous follow-
up studies [125, 126]. Patients with symptomatic rota-
tor cuff tears typically experience pain, weakness, loss of 
function, and cascading effects on sleep, work, leisure, 
and psychosocial functioning, including depression and 
anxiety [127], necessitating early surgical repair. In con-
trast, patients with chronic full and partial thickness tears 
due to tendon degeneration and attrition are not always 
referred to the hospital unless they have substantial prob-
lems [128]. Therefore, further study on acute rotator cuff 
tear models is needed before progressing to more com-
plicated chronic rotator cuff tear models.

One major drawback of using animals to model human 
rotator cuff tears is that most animals rely on their limbs 
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for support, and their forelimbs have more weight-
bearing functions than humans [27]. Rabbits, rats, dogs, 
and sheep lack the blending of individual flat tendons 
to form a single insertion, which is a defining feature of 
the human rotator cuff anatomy [129]. However, animal 
models still serve as practical means to understand the 
cellular and molecular pathways and pathology of rota-
tor cuff tears and to develop new technologies to improve 
existing treatments. Ideal animal models of rotator cuff 
repair should lack spontaneous tendon healing after 
injury, have tendon sizes that allow for suture repair tech-
niques like those used in humans, and exhibit irreversible 
muscular atrophy, stiffness, and fatty accumulation after 
injury [27]. A systematic review found that the rat model 
is most used (53.56%), followed by the rabbit model 
(25.67%), with the supraspinatus tendon being the most 
common injury site (62.10%), and acute full-thickness 
tear being the most common injury type (48.41%) [130]. 
The most common research purposes were testing the 
repair effect of patches (24.94%), observing pathophysi-
ological changes after rotator cuff injury (20.78%), and 
testing the intervention effect of drugs (11.00%).

Conclusions
In summary, this study successfully developed a mas-
sive rotator cuff tendon defect model in rabbits. Further-
more, a scaffold-mediated approach utilizing a modified 
Mason-Allen suture technique was specially designed as 
the repair strategy. This technique ensured a secure and 
tight connection between the damaged tendon and the 
implanted scaffold. The defect model and repair strategy 
developed here represent a highly practical animal model 
for conducting a wide range of preclinical studies aimed 
at evaluating the efficacy of tissue engineering-based ten-
don repair methods. This comprehensive protocol pro-
vides a powerful tool for studying massive rotator cuff 
tendon defects and facilitates the development of novel, 
tissue engineering based therapeutic strategies for ten-
don repair.
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