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Abstract 

Background  Neoadjuvant therapy followed by surgery has become the standard of care for locally advanced 
esophageal squamous cell carcinoma (ESCC) and accurate pathological response assessment is critical to assess 
the therapeutic efficacy. However, it can be laborious and inconsistency between different observers may occur. 
Hence, we aim to develop an interpretable deep-learning model for efficient pathological response assessment fol-
lowing neoadjuvant therapy in ESCC.

Methods  This retrospective study analyzed 337 ESCC resection specimens from 2020–2021 at the Pudong-Branch 
(Cohort 1) and 114 from 2021–2022 at the Puxi-Branch (External Cohort 2) of Fudan University Shanghai Cancer 
Center. Whole slide images (WSIs) from these two cohorts were generated using different scanning machines to test 
the ability of the model in handling color variations. Four pathologists independently assessed the pathological 
response. The senior pathologists annotated tumor beds and residual tumor percentages on WSIs to determine con-
sensus labels. Furthermore, 1850 image patches were randomly extracted from Cohort 1 WSIs and binarily classified 
for tumor viability. A deep-learning model employing knowledge distillation was developed to automatically classify 
positive patches for each WSI and estimate the viable residual tumor percentages. Spatial heatmaps were output 
for model explanations and visualizations.

Results  The approach achieved high concordance with pathologist consensus, with an R^2 of 0.8437, a RAcc_0.1 
of 0.7586, a RAcc_0.3 of 0.9885, which were comparable to two senior pathologists (R^2 of 0.9202/0.9619, RAcc_0.1 
of 8506/0.9425, RAcc_0.3 of 1.000/1.000) and surpassing two junior pathologists (R^2 of 0.5592/0.5474, RAcc_0.1 
of 0.5287/0.5287, RAcc_0.3 of 0.9080/0.9310). Visualizations enabled the localization of residual viable tumor to aug-
ment microscopic assessment.

Conclusion  This work illustrates deep learning’s potential for assisting pathological response assessment. Spa-
tial heatmaps and patch examples provide intuitive explanations of model predictions, engendering clinical trust 
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and adoption (Code and data will be available at https://​github.​com/​Winni​eLaugh/​ESCC_​Perce​ntage once the paper 
has been conditionally accepted). Integrating interpretable computational pathology could help enhance the effi-
ciency and consistency of tumor response assessment and empower precise oncology treatment decisions.

Keywords  Pathological Tumor Response, Immunochemotherapy, Esophageal Squamous Carcinoma, Knowledge 
Distillation, Semi-supervised Learning

Introduction
Esophageal carcinoma persists as the 7th leading cause of 
cancer mortality worldwide, with esophageal squamous 
cell carcinoma (ESCC) being the predominant subtype, 
associated with substantial morbidity and mortality in 
China [1, 2]. While preoperative chemoradiotherapy fol-
lowed by surgery has become the standard of care for 
locally advanced ESCC [2–4], the prognosis remains 
dismal for many patients. Recently, the advent of neo-
adjuvant immunotherapy has demonstrated remarkable 
efficacy and favorable safety across numerous malignan-
cies [5]. Consequently, there has been growing enthusi-
asm for leveraging neoadjuvant chemoimmunotherapy 
regimens to improve outcomes in ESCC [4, 6–8]. Deter-
mining optimal integration of immunotherapies with 
conventional neoadjuvant strategies represents an urgent 
unmet need with profound implications for enhancing 
the historically poor prognosis of this deadly disease.

Accurate pathological response assessment is critical 
to assess therapeutic efficacy and determine the optimal 
post-operation regimens for cancer patients. Currently, 
tumor regression grade (TRG), pathological complete 
response (pCR) and major pathological response (MPR) 
[9–11] serve as the predominant metrics for pathological 
response assessment, quantifying the percentage of via-
ble residual tumor cells in resected specimens following 
neoadjuvant therapy [9, 12]. Both pCR and MPR, defined 
by no viable residual tumor or no more than 10% viable 
residual tumor, are considered as important surrogate 
trial endpoints [13, 14]. However, pathological assess-
ments can be labor-intensive and the results among dif-
ferent observers may exhibit inconsistency.

Our study therefore aimed to develop and validate a 
novel deep learning-based approach to serve as a scal-
able tool to substantially help enhance the pathological 
response assessment after neoadjuvant therapy, which 
could help reduce the workload and standardize the 
assessment results, unlocking the full potential of per-
sonalized post-operation treatment, especially in high-
risk areas.

Recent advances in artificial intelligence have sparked 
growing interest in applying deep learning approaches 
to transform cancer diagnostics and clinical practice [15, 
16]. While deep learning models have shown promise for 
classification and segmentation tasks using whole slide 

images [17–22], new challenges have emerged for assess-
ing tumor regression grade. First, convolutional neural 
networks struggle to jointly extract local tissue details 
and global slide-level features due to the vast scale of 
whole slide images [23, 24]. Second, time-intensive man-
ual annotation makes large supervised training datasets 
infeasible, prompting weak supervision methods that 
leverage slide-level labels to infer patch-level informa-
tion [25, 26]. However, this patch-level inference lacks 
robustness when slide-level labels contain noise. This is 
often the case for pathologist-derived tumor percentage 
estimates serving as ground truth, as those estimates are 
clinically meaningful but not statistically verified [27].

To overcome these obstacles, we developed a novel 
deep learning system tailored for tumor response 
assessment. Instead of relying only on slide-level weak 
supervisions, our approach uniquely incorporates both 
patch-level and slide-level labels through semi-super-
vised knowledge distillation. This model demonstrated a 
strongly quantitative and qualitative performance, with 
residual tumor percentage estimation closely parallel-
ing the results of experienced pathologists. Across two 
independent test sets, our reproducible model achieved 
R
2 scores of 0.8437 and 0.7450 respectively for predict-

ing pathologist-derived residual tumor percentages, sig-
nificantly exceeding junior pathologists. In addition, our 
model generated visually interpretable heat-maps, high-
lighting regions of possible tumor involvement, which 
could serve as an assistant tool to aid pathologists, espe-
cially junior trainees, in assessing potential viable tumor 
areas. The visual interpretability of our approach con-
fers a key advantage over black-box models, allowing 
pathologists to intuitively evaluate the rationale of model 
predictions. These results spotlight the potential of this 
novel deep learning framework to help enhance and 
standardize the pathological response evaluation through 
human-AI symbiosis. The graphical abstract of this study 
is shown in Fig. 1.

Materials and Methods
Dataset and Annotation Methods
The dataset was consisted of 451 samples from two 
branches of Fudan University Shanghai Cancer Center 
(FUSCC) generated by different scanners. Cohort 1 
included 337 whole slide images (WSIs) of 93 ESCC 

https://github.com/WinnieLaugh/ESCC_Percentage
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patients treated at the Pudong-Branch from 2020–2021. 
These WSIs were scanned using a Hamamatsu Photon-
ics NanoZoomer S360MD Slide scanner. Cohort 2 served 
as an external test set, consisting of 114 WSIs from 35 
patients treated at the Puxi-Branch in 2022. WSIs of 
Cohort 2 were generated by Digital Micro Image Analysis 
System from Shanghai Aitrox Technology Corporation 
Limited. Cohorts were Stratified by hospital branches, 
scanning machines, and years, given the variability in 
whole slide imaging equipment and other potential 
effects on analysis. Here we illustrated the color vari-
ation of the two cohorts by WSI examples (Fig. 2a) and 
bin count visualization of the RGB channel values of 
the tumor bed regions (Fig. 2b). In addition, WSIs from 
Cohort 1 were randomly split into training (n = 225), vali-
dation (n = 30) and test (n = 82) sets. The development of 
the dataset was illustrated in Fig. 2c.

Pathological response assessment based on WSIs 
involved multiple levels of annotation, as shown in Fig. 3. 
Initial independent assessments were conducted by two 
board-certified senior expert pathologists with over 
10 years of subspecialty experience, as well as two junior 
pathologists with around 2 years of experience. The resid-
ual viable tumor percentage was equal to the area of via-
ble tumor divided by the area of tumor bed. And the area 

of the tumor bed was the sum of the viable tumor area, 
the necrotic area and the stromal area, totaling 100%. To 
derive consensus ground truth labels, the senior patholo-
gists subsequently reevaluated each WSI jointly, recon-
vening to deliberate any cases of discrepancy through 
collaborative discussion. In other words, the ground 
truth was the unanimously agreed-upon result of the 
two senior pathologists. Notably, the assessment results 
of the senior pathologists achieved a strong R2 score of 
0.9202 and 0.9619 with the consensus labels, indicating 
robust inter-rater agreement. The resulting unified tumor 
percentage labels constituted the gold standard annota-
tions for subsequent training and evaluation of the com-
putational pathology system. When compared to the 
senior pathologists’ annotations, the junior pathologists 
achieved much lower R2 scores of only 0.5592 and 0.5474, 
highlighting the discrepancy in accuracy between senior 
expert and junior trainee assessment. Pathological tissue 
sampling details were illustrated in the Additional file 1: 
Appendix C section.

In addition to WSI-level percentage estimates, patch-
level labels were obtained to facilitate deep learning. 
Tumor bed regions were extracted from the WSIs and 
were cropped into 256 × 256 pixel patches at 20 × mag-
nification. 1850 patches from the training set were 

Fig. 1  Graphical abstract of the study design and highlights
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Fig. 2  Color differences of WSIs from 2 cohorts. a Representative WSIs from Cohort 1 (Pudong-Branch 2020–2021) and External Cohort 2 
(Puxi-Branch 2022) b Bin counts of red, green, blue channel values within tumor bed regions, highlighting quantitative variation between 2 
cohorts. c Patch-level dataset generation workflow. Annotated tumor beds from pathologists were extracted from WSIs at 20 × magnification. 
Non-overlapping 256 × 256 pixel patches were exhaustively cropped from the tumor bed regions. The number of patches extracted per WSI ranged 
from 7 for small tumor beds to 21,737 for large tumor beds, depending on the annotated tumor bed size within each whole slide image

Fig. 3  1) Data annotation protocol, comprising whole slide image (WSI)-level viable residual tumor percentage labels and patch-level binary 
classification of positive vs negative regions. 2) Two-phase training paradigm, first exploiting cross-entropy loss for labeled patches, followed 
by training with pseudo-labeled WSI patches determined by the pretrained model. 3) Exemplar clinical applications of the model for residual tumor 
percentage quantification and spatial mapping of potential viable regions.  shows where model weights were frozen
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randomly selected and manually annotated by the sen-
ior pathologists, designating each patch as positive if 
viable tumor cells were present, or negative if no tumor 
cells were visible. This patch-level labeling allowed direct 
supervision of tumor localization and morphology pat-
terns at the patch scale, complementing the coarse slide-
level percentage estimates.

Establishment and Evaluation of the Deep Learning‑Based 
System
Our pathological tumor response model was built on 
patch-level classification of tumor contents. Specifically, 
cropped patches were classified as positive or negative 
based the presence or absence of viable tumor cells. The 
proportion of positive patches within the tumor bed 
region provided whole-slide estimates.

A two-stage semi-supervised approach (Fig.  3) was 
employed to train our model for the whole slide tumor 
percentage estimation. Specifically, to reduce computa-
tion cost, a pretrained encoder [27] was used to extract 
features from the patches and then a two-layer fully con-
nected neuron was used as a classifier.

In our two-step training, we first trained the classi-
fier on the pathologist-labeled patches to learn the mor-
phological patterns which associated with viable tumor 
cells. Then in the second step, for each training WSI, 
all unlabeled patches from the tumor bed were evalu-
ated and ranked by the predicted probability of contain-
ing viable tumor. We applied the pathologist-derived 
slide-level percentage along with a threshold to assign 
pseudo-labels. Details of these two steps can be found in 
the Additional file 1: Appendix B.

We iteratively trained the two steps for several itera-
tions. The final classifier generated the tumor likelihood 
heatmaps to visualize the predictions (Fig. 6), which can 
assist pathologists in evaluating areas of potential tumor 
involvement. To assess the slide-level residual tumor per-
centages, the predicted positive patches were aggregated 
and divided by the total tumor bed area.

Evaluation Metrics
We evaluated model performance using both quantitative 
and qualitative measures. Quantitatively, we employed 
several complementary metrics: R2 regression score, 
mean absolute error, mean squared error, and robust 
accuracy. Details of the evaluation metrics can be found 
in the Additional file 1: Appendix A section.

Results
The Correlation Between Pathological Response 
and the Benefit of Survival
A total of 128 ESCC patients from cohort 1 and cohort 2 
were included. All the patients had neoadjuvant therapy 

followed by surgery at different branches of Fudan Uni-
versity Shanghai Cancer Center (FUSCC) from January 
2020 to December 2022. The clinicopathological and 
treatment characteristics were illustrated in Table  1 in 
the Additional file 1: Appendix D section. All the patients 
received immunotherapy combined with chemotherapy. 
The median age of the patients was 61 in cohort 1 and 
63 in cohort 2. Most of the patients were male with a 
smoking history. All the patients received docetaxel plus 
cisplatin (TP regimen) for every 21  days for 2 cycles. 
Regarding immune checkpoint blockade, nearly half 
of the patients (46.2% and 40%) of the patients received 
Camrelizumab and about 30% of the patients received 
Pembrolizumab (29% and 31.4%).

The degree of pathological response was accessed by 
pCR and MPR. pCR was defined as the absence of via-
ble residual tumor and MPR was defined as less than 
or equal to 10% of the viable residual tumor. Among 
the 128 patients in cohort 1 and cohort 2, about 25% 
of the patients achieved pCR (32/128) while 35.2% of 
the patients achieved MPR (45/128). OS and PFS were 
defined from the time of surgical resection to death/dis-
ease progression. yTNM being a well-accepted assess-
ment metric of post-treatment disease status was also 
generated for the comparison of prognostic prediction 
ability. Detailed information regarding patients’ yTNM 
stage was illustrated in Table  1 in Additional file  1: 
Appendix D section. (yTNM implied the features of the 
primary tumor(T), regional lymph nodes(N) and the 
presence or absence of distant metastasis(M) based on 
post-therapy findings).

The survival curves were plotted in Fig.  4(a-f ). At 
the time of analysis, with a 36-months follow-up, 
patients with pCR had a significantly better OS (Fig. 4a, 
p = 0.0098) and PFS (Fig. 4b, p = 0.0008). Likewise, MPR 
was also significantly predictive of a longer OS (Fig.  4c, 
p = 0.0006) and PFS (Fig.  4d, p < 0.0001). As a refer-
ence metric, patients with a lower yTNM stage were 
also shown having a greater likelihood to obtain better 
survival benefits (Fig.  4e, p = 0.0401) and PFS (Fig.  4f, 
p = 0.0338).

Inter‑Observer Agreement Between Pathologists
Four pathologists at different experience levels indepen-
dently assessed the WSI in our dataset, which included 
two senior pathologists with over 10 years of specialty 
experience, and two junior pathologists with 2 years of 
experience.

Two senior pathologists achieved a high inter-observer 
concordance with the consensus labels, with R2 scores 
of 0.9202 and 0.9619, while comparisons of junior to 
senior pathologists yielded markedly lower agreement, 
with R2 socres of 0.5592 and 0.5474. More details of the 
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comparison among pathologists at different level could 
be found in Table 2 in the Additional file 1: Appendix D 
section.

In all, senior pathologists exhibited robust concord-
ance in tumor percentage estimation, providing a relia-
ble consensus gold standard. Junior pathologists showed 

Fig. 4  The correlation between pCR, MPR, yTNM and the benefit of survival. Both pCR and MPR were predictive of a longer OS and PFS (a-d). 
Regarding the well-accepted assessment metric yTNM, patients with a lower yTNM stage were also shown having a greater likelihood of obtaining 
better survival benefits as well (e–f). (pCR: the absence of viable residual tumor; MPR: less than or equal to 10% of the viable residual tumor. yTNM 
implied the features of the primary tumor(T), regional lymph nodes(N) and the presence or absence of distant metastasis(M) based on post-therapy 
findings; OS: overall survival; PFS: progression-free survival)

Fig. 5  a Comparative assessment of residual tumor percentage by different analytical approaches versus expert consensus ground truth. b 
Assessment of model-predicted residual tumor percentages against ground truth measurements across two study cohorts. The performance 
remained notable on the external Cohort 2 test set, showing satisfactory generalizability of our approach to new histological specimens. c Scatter 
plots comparing viable tumor percentage predictions for example patients from human experts and the deep learning model, illustrating general 
concordance between automated and manual assessment methods
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only fair to moderate agreement with senior raters, with 
a tendency for overestimation bias.

As shown in Fig. 5, junior pathologists tended to sub-
stantially overestimate residual tumor percentages 
when compared to senior pathologists. Further analysis 
revealed that this might have been due to the misidenti-
fication of some reactive cells, such as giant cells and his-
tocytes, as degenerated tumor cells, as well as the failure 
of excluding the interstitial fibrous tissue that was inter-
spersed among the tumors.

These results indicated that the results of differ-
ent observers could be inconsistent and precise tumor 
response assessment might be challenging for less expe-
rienced pathologists. Hence, the exploration of compu-
tational aids is necessary, considering its reproducibility 
may help improve inter-observer reliability, particularly 
in less experienced practitioners.

Comparison Between Manual and Dl‑powered Assessment
Both quantitative and qualitative results demonstrated 
the efficacy of our deep learning-based assessment sys-
tem for residual tumor estimation on Cohort 1. As shown 
in Fig. 5 and Table 3 in the Additional file 1: Appendix D 
section, our model achieved an R2 of 0.8437 against con-
sensus labels, and a RAcc0.3 of 0.9885. This level of accu-
racy significantly exceeded those of junior pathologists 
and closely approaching those of senior experts. Thus, 
for the original training dataset, this deep learning model 
was proved capable of reliable residual tumor percentage 
estimations comparable to experienced human observers.

When applied to the external cohort 2 test set, the per-
formance of this model remained notable, as shown in 
Fig. 5b. Specifically, this model attained an R2 of 0.7450 
and a RAcc0.3 of 0.9428 on this external dataset, as pre-
sented in Table  3 in the Additional file  1: Appendix D 
section. While metrics were modestly decreased versus 
cohort 1, this evaluation demonstrated satisfactory gen-
eralizability of our approach to new histological speci-
mens. By achieving reliable estimates on both related and 
distinct cohort images, our deep learning system substan-
tiated its potential as a computational tool to empower 
accurate and consistent tumor response assessment.

Visualization and Interpretability
To convey the interpretability of our model’s predictions 
and tumor localization capabilities, we generated various 
visualizations using representative test cases. Figure  6 
displayed heatmaps and classified patches from four 
whole slide images and compared against ground truth 
assessments. Specifically, each row presents: 1) the whole 
slide image, 2) tumor bed area 3) the full-slide heatmap 
of estimated tumor likelihood, and 4) high and low pos-
sibilities patches. Alongside each row, we reported the 

predicted ground truth residual tumor percentages. 
This visualization demonstrated the model’s capability 
to localize tumor regions and provide reasonable patch-
level classification, while also evaluating the slide-level 
residual tumor percentage. Overall, these visualization 
tools support the model’s reliability and interpretability 
for clinical application in pathological tumor assessment.

Discussion
Pathological assessment after neoadjuvant treatment is 
one of the most important criterions for evaluating the 
effectiveness of preoperative treatment methods and usu-
ally serves as the basis for formulating post-surgical treat-
ment plans. It is also considered a surrogate endpoint for 
clinical trials, aiming to shorten the time required for 
evaluation. Inevitably, in our study, patients achieving 
pathological remission (pCR, MPR) were associated with 
better survival benefits (OS, PFS). However, pathological 
assessment can be labor-intensive in high-risk areas and 
practitioners with varying levels of experience may have 
inconsistent results due to subjectivity.

This study demonstrated the potential of a deep learn-
ing-based model for identifying residual viable tumor 
cells and assessing whole-slide residual tumor percent-
age. By aggregating patch-level predictions, this model 
was able to generate slide-level predictions that strongly 
correlated with while minimally differed from expert 
assessments across both independent cohorts, despite 
inter-cohort differences in hospital branch, scanning 
equipment, and years.Tumor likelihood heatmaps pro-
vided a spatial localization of involved regions, serving 
as a valuable visualization tool, which may assist prac-
titioners for potential tumor involvement prediction in 
clinical practice. These results indicated the capability 
of AI-assisted computational methods for reliable tumor 
response assessment after neoadjuvant therapy, which 
is crucial for personalized post-operation treatment 
strategy-making.

Several findings emerged from the analysis of the model 
output versus pathologists’ performance. First, although 
senior pathologists exhibited high inter-observer con-
cordance, providing a robust gold standard for evaluation. 
Junior pathologists demonstrated only fair to moderate 
agreement with the seniors, largely due to their misiden-
tification of the viable residual tumor content and the 
failure to exclude the interstitial fibrous tissue that was 
interspersed among the tumors. This finding mirrored 
some known challenges of accurate and consistent path-
ological response assessment, especially for less experi-
enced practitioners, while the advantages of deep learning 
assistance may largely compensate these weaknesses.

Second, the accuracy of this DL-powered model 
surpassed that of junior pathologists, while closely 
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approaching expert-level performance. Quantitative 
metrics and spatial heatmaps highlighted the capacities 
for tumor localization and residual tumor percentage 
estimation, rivaling specialty pathologists. As an adjunct 
computational aid, such systems may reduce the incon-
sistency and help standardize the pathological response 
assessments, particularly among less experienced 
practitioners.

Third, with the increasing popularity of preoperative 
neoadjuvant therapy, pathological response assessment 
can be labor-intensive and time consuming. With further 
enhancement of the AI-model, pathologists may only 
need to review and make adjustments on the estimations 
generated by the AI-model, which could greatly reduce 
the workload and shorten the time for patients to receive 
the results.

Nevertheless, this system still has some limitations. 
First of all, the performance of this model still falls 
short of experienced pathologists, indicating room 
for improvement, which might be enhanced through 

training refinements and annotated training data scale. 
Second, since this was a pilot model, comparisons were 
made using tissue sample sets from a single cancer type. 
Broader validation across heterogeneous samples, stains, 
and tumor varieties is warranted. Finally, manual delinea-
tion of tumor beds is still required in this model, which is 
expected to be automated in the future work.

In summary, this work demonstrates a reliable deep 
learning-based model which is able to generate patho-
logical response assessment after neoadjuvant therapy 
with performance approaching experienced patholo-
gists. This finding indicates the potential of AI assistance 
to help relieve the workload of practitioners and enhance 
the diagnostic consistency. Following further validation, 
refinement, and automation of tumor bed segmenta-
tion, our deep learning-based model and accompanying 
visualization tool may serve as valuable supplements 
that empower the pathologists by improving diagnostic 
consistency and accuracy, particularly assisting junior 
pathologists in pathological response assessments.

Fig. 6  Demonstrative potential clinical application of the deep learning framework, enabling automated viable residual tumor percentage 
estimation and spatial mapping to augment pathological response assessment
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