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Abstract 

Background Non-small cell lung cancer (NSCLC) remains a leading cause of cancer-related deaths worldwide, 
primarily due to its propensity for metastasis. Patients diagnosed with localized primary cancer have higher sur-
vival rates than those with metastasis. Thus, it is imperative to discover biomarkers for the early detection of NSCLC 
and the timely prediction of tumor metastasis to improve patient outcomes.

Methods Here, we utilized an integrated approach to isolate and characterize plasma exosomes from NSCLC patients 
as well as healthy individuals. We then conducted proteomics analysis and parallel reaction monitoring to identify 
and validate the top-ranked proteins of plasma exosomes.

Results Our study revealed that the proteome in exosomes from NSCLC patients with metastasis was distinctly 
different from that from healthy individuals. The former had larger diameters and lower concentrations of exosomes 
than the latter. Furthermore, among the 1220 identified exosomal proteins, we identified two distinct panels of bio-
markers. The first panel of biomarkers (FGB, FGG, and VWF) showed potential for early NSCLC diagnosis and demon-
strated a direct correlation with the survival duration of NSCLC patients. The second panel of biomarkers (CFHR5, C9, 
and MBL2) emerged as potential biomarkers for assessing NSCLC metastasis, of which CFHR5 alone was significantly 
associated with the overall survival of NSCLC patients.

Conclusions These findings underscore the potential of plasma exosomal biomarkers for early NSCLC diagnosis 
and metastasis prediction. Notably, CFHR5 stands out as a promising prognostic indicator for NSCLC patients. The 
clinical utility of exosomal biomarkers offers the potential to enhance the management of NSCLC.
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Introduction
Despite significant advances in cancer control, the over-
all survival and quality of life for lung cancer patients 
have not seen substantial improvements [1–3]. Lung 
cancer remains a leading cause of cancer-related deaths 
worldwide [1, 4]. Non-small-cell lung cancer (NSCLC) 
accounts for approximately 85% of all new lung cancer 
cases and is characterized by high heterogeneity. Early 
screening efforts, particularly among high-risk individu-
als such as smokers, have led to a significant increase 
in lung cancer diagnoses, with an estimated 3.8 million 
new cases expected by 2050 [2, 5]. The 5-year survival 
rates for lung cancer range from 4 to 17% depending on 
the stage and regional disparities, and it is projected that 
there will be 3.2 million deaths attributed to lung cancer 
globally over the next three decades [2, 6].

Surgery is the standard treatment for early-stage lung 
cancer; however, the challenge lies in the potential for 
local recurrence or the development of distant metasta-
ses, which are typically incurable. The process of metas-
tasis, where cancer cells spread from the lungs to other 
organs, represents the most devastating and fatal aspect 
of lung cancer [7]. It is worth noting that the majority 
of lung cancer-related deaths occur due to metastatic 
disease rather than the primary tumors themselves. 
Metastasis involves a complex series of biological events 
that begin with the invasion of cells from the primary 
tumor into surrounding tissues, penetrating the mucosa 
[8]. These cells then disseminate through the blood-
stream, lymphatic system, or neighboring structures. 
Subsequently, secondary tumors are established in dis-
tant organs, where they continue to grow and colonize 
[9, 10]. The progression of metastasis relies on tumor 
cells acquiring various phenotypic states and manipulat-
ing the immune and stromal cells in their environment 
to promote growth and evade immune surveillance 
[11]. Unlike primary tumors, which can often be effec-
tively treated with localized therapies such as surgery 
or radiation, metastatic cancer is a systemic disease that 
affects multiple organs [9]. It can compromise organ 
function either by directly colonizing them or by alter-
ing their metabolism through changes in secreted mol-
ecules. Ultimately, these disruptions contribute to the 
deterioration of the patient’s condition. Importantly, the 
response to systemic treatments can significantly dif-
fer between primary and metastatic tumors within the 
same individual [12]. Despite some exceptions, clini-
cally detectable metastasis remains largely incurable 
due to the acquired resistance of metastatic tumors to 

currently available therapies [13]. Currently, there is a 
lack of effective biomarkers for predicting metastasis in 
early postoperative lung cancer patients.

Noninvasive biomarkers play an indispensable role 
in the early detection of lung cancer and predicting 
the likelihood of recurrence or metastasis, constitut-
ing a significant clinical challenge. In recent years, liq-
uid biopsy has emerged as a promising approach for the 
noninvasive detection of lung cancer [14]. For instance, 
Ilie et  al. utilized computed tomography to track the 
counts of circulating tumor cells (CTCs) in peripheral 
blood from chronic obstructive pulmonary disease 
patients over a five-year period. They found that CTC 
counts in peripheral blood can serve as a useful marker 
to predict the progression from chronic lung disease to 
lung cancer [15]. Despite the growing body of research 
on CTCs, substantial clinical evidence supporting their 
utility as biomarkers for guiding lung cancer treat-
ment is still lacking [16]. Moreover, accurate noninva-
sive biomarkers that can differentiate between healthy 
individuals and those with nonmetastatic or metastatic 
cancers remain elusive. Thus, there is an imperative 
need to identify valid biomarkers to manage the diag-
nosis and treatment of lung cancer.

Extracellular vesicles (EVs), particularly exosomes, 
have emerged as valuable tools in liquid biopsy and 
offer significant advantages in predicting cancer and 
metastasis [17]. Originating from endosomes and rang-
ing from approximately 40–160  nm in size, exosomes 
encapsulate active proteins, phosphoproteins, lipids, 
and genetic materials (DNA and RNA), known as cargo, 
that can provide more specific and sensitive representa-
tions of the disease state compared to circulating pro-
teins in serum [18–22]. These contents, shielded by a 
lipid bilayer, offer stability in the bloodstream, mak-
ing exosomes particularly suitable for detection and 
analysis. As an illustrative example, the Kalluri group 
discovered that glypican 1 (GPC1)+ exosomes carry-
ing the KRAS mutation in pancreatic cancer patients 
precisely mirrored mutations found in the tumor tis-
sues, underscoring the heightened specificity exosomes 
can offer over traditional serum or plasma measure-
ments. Indeed, several independent laboratories have 
reported that in the diagnosis of pancreatic, breast, and 
colon cancer, GPC1 is enriched in cancer cell–derived 
exosomes, thus enabling the detection of cancer and 
possibly response to therapy [22–32]. Exosomal cargo 
can mirror cellular alterations at early stages of the dis-
ease, even before they become detectable in systemic 
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circulation or serum. This early detection capability 
is crucial in improving patient outcomes by enabling 
interventions at earlier stages of the disease. While 
serum-based markers might only rise after a disease 
has reached a certain progression level, the contents of 
exosomes can signal cellular alterations at much earlier 
stages. Specificity and earliness are particularly pivotal 
for conditions such as NSCLC, where early and precise 
detection can significantly influence patient outcomes.

Previous studies have identified plasma exosomes 
as potential diagnostic markers for advanced NSCLC 
[33–35]. For example, Peng et  al. identified plasma-
derived exosomal microRNAs as potential biomarkers 
for predicting the efficacy of immunotherapy in advanced 
NSCLCs [36]. Another study highlighted the role of 
FAM3C in circulating tumor-derived extracellular vesi-
cles, promoting NSCLC growth in secondary sites [37]. 
These findings suggest that exosomes hold promise as 
biomarkers for lung cancer metastasis and recurrence. 
Despite these advancements, the translation of these 
findings into clinical applications is yet to be realized. 
In this study, acknowledging the challenges in methodo-
logical standardization, we employed a set of measures, 
including nanoparticle tracking analysis (NTA), trans-
mission electron microscopy (TEM), exosome marker 
protein detection and liquid chromatography tandem 
mass spectrometry (LC–MS/MS)-based tandem mass 
tag (TMT) quantitative proteomics, to identify exosome-
carried proteins as potential biomarkers for predicting 
NSCLC metastasis. We validated these candidate pro-
teins using parallel reaction monitoring (PRM) in clinical 
samples.

Methods
Patient samples
The study protocol received ethical approval from the 
ethics committee of Longhua Hospital, Shanghai Uni-
versity of Traditional Chinese Medicine, China. Prior to 
participating in the study, all patients provided written 
informed consent for the collection of plasma samples 
and the utilization of their pathological data. Plasma sam-
ples were obtained from patients diagnosed with stage 
Ia-IV NSCLC, including both adenocarcinoma (ADC) 
and squamous cell carcinoma (SCC), using CT scans and 
established pathological diagnosis criteria. Sample col-
lection took place at the Department of Oncology, Long-
hua Hospital, Shanghai, China, from May 2019 to January 
2020.

A control group consisting of 6 healthy individuals was 
included in the study. These individuals were confirmed 
to be cancer-free based on CT scans and, when appli-
cable, negative biopsy results. Briefly, venous blood was 
collected from the participants using an evacuated blood 

collection tube containing ethylenediaminetetraacetic 
acid (EDTA). The collected samples were allowed to 
stand for 30 min and then subjected to centrifugation at 
4,000 × g for 30 min to remove cell debris and platelets. 
Finally, the plasma samples were stored at -80 °C for fur-
ther analysis.

Plasma exosome isolation
To isolate exosomes from the plasma samples, the follow-
ing protocol was employed. One milliliter of a relatively 
cell-free plasma sample was thawed on ice and diluted 
20 times with phosphate-buffered saline (PBS). The 
diluted samples were then subjected to centrifugation at 
10,000 × g for 30 min at 4 °C to remove microvesicles. The 
resulting supernatant was carefully transferred to ultra-
centrifuge tubes and subjected to ultracentrifugation at 
110,000 × g for 2 h at 4  °C. This step aimed to pellet the 
exosomes.

Following ultracentrifugation, the exosome pellet was 
washed with 6 mL of cold PBS and subjected to a second 
round of ultracentrifugation at 110,000 × g for 2 h at 4 °C. 
This step ensured the removal of contaminants and fur-
ther concentrated the exosomes. After the second ultra-
centrifugation, the pelleted exosomes were resuspended 
in 100 μL of PBS containing a protease inhibitor cocktail 
(Roche Applied Science, Basel, Switzerland). Finally, the 
resuspended exosomes were stored at -80 °C for further 
analysis [38].

Sodium dodecyl sulfate–polyacrylamide gel 
electrophoresis (SDS‑PAGE)
For the analysis of exosome proteins, a 10% SDS-PAGE 
gel (InvitrogenTM, Thermo Fisher, New York, USA) was 
prepared. The exosome protein samples were loaded 
onto the gel and subjected to electrophoresis at 120  V 
for 60  min in MOPS SDS running buffer. To monitor 
the migration of proteins, a prestained protein standard 
(Life Technologies, Shanghai, China) was included in one 
of the lanes. After electrophoresis, the gels were stained 
using a Fast Silver Stain Kit (Beyotime, Beijing, China) to 
visualize the protein bands and achieve optimal contrast 
for protein detection.

Exosome characterization by transmission electron 
microscopy (TEM)
Transmission electron microscopy (TEM) analysis was 
employed to examine the plasma vesicles. To prepare 
the samples, isolated exosomes (10 μL) were diluted 10 
times with PBS. Subsequently, the diluted exosomes were 
carefully loaded onto an ultrathin carbon film mesh 300 
copper grid and allowed to dry for fixation. To enhance 
contrast and facilitate visualization, the exosomes on 
the grid were stained with 2% phosphotungstic acid 
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for 5  min. This staining step aided in highlighting the 
structural features of the exosomes during imaging. The 
images of the exosomes were captured using a Philips 
CM120 microscope (Eindhoven, Netherlands), which 
operated at an acceleration voltage of 120 kV. TEM pro-
vided high-resolution images, enabling detailed examina-
tion of exosome morphology and structure.

Western blotting analysis
In the analysis of exosome proteins, the following experi-
mental steps were performed. First, the exosomes were 
lysed using RIPA buffer for 30 min at 4 °C, enabling the 
release of proteins from the exosomes. Next, 25  μg of 
exosome proteins were loaded onto 10% SDS-PAGE 
gels (Invitrogen, Thermo Fisher, New York, USA). The 
gels were then subjected to electrophoresis at 120  V 
for 60  min in MOPS SDS running buffer. This process 
allowed for the separation of the proteins based on their 
molecular weight. Following electrophoresis, the proteins 
present in the gel were transferred onto polyvinylidene 
fluoride (PVDF) membranes (Millipore, Massachu-
setts, USA) using a transfer apparatus. The transfer was 
conducted at 200 mA for 1 h, facilitating the transfer of 
proteins from the gel to the membrane. To visualize the 
protein bands, the resulting gels were stained using a Fast 
Silver Stain Kit (Beyotime, Beijing, China), which pro-
vided optimal contrast for protein detection. To identify 
specific proteins of interest, antibodies were utilized. The 
antibodies used in this study were obtained from Abcam 
and included CD63 (1:500) and CD81 (1:500). After 
washing the PVDF membrane to remove any unbound 
proteins, it was incubated with an anti-rabbit IgG-HRP 
secondary antibody (Jackson Laboratory, USA) in 5% 
milk in PBS-T at room temperature for 40 min. This sec-
ondary antibody aided in the detection of primary anti-
body binding. For visualization of the detected proteins, 
enhanced chemiluminescence (ECL) using Super Signal 
West Pico (Thermo) was employed. This chemilumines-
cent substrate generated a signal in the presence of the 
HRP-conjugated secondary antibody, enabling the visu-
alization of the protein bands.

Nanoparticle tracking analysis (NTA)
The purified exosomes obtained from serum samples 
were resuspended in 100 μL of PBS buffer. To facili-
tate accurate measurement, the exosomes were further 
diluted 10 times with PBS. The number and size of the 
exosomes were then assessed using the NanoSight NS300 
NTA system (Malvern, United Kingdom), which utilizes 
nanoparticle tracking analysis (NTA). For NTA analysis, 
the exosome samples were carefully resuspended in PBS 
and injected into the sample chamber of the NanoSight 
instrument. Each sample was measured three times to 

ensure reliable and reproducible data. The NanoSight 
system utilizes laser light scattering and particle tracking 
technology to observe and track the Brownian motion 
of individual exosomes. By analyzing the particle move-
ment, the system provides information about the size and 
concentration of the exosomes in the sample.

Protein preparation
To process the exosome sample for further analysis, the 
following steps were performed. First, the exosome sam-
ple was ground using liquid nitrogen until it formed a 
cell powder. The cell powder was then transferred to a 
5-mL centrifuge tube. Next, four volumes of lysis buffer 
containing 8 M urea, 1% Triton-100, 10 mM dithiothrei-
tol, and 1% protease inhibitor cocktail were added to the 
cell powder. To enhance the lysis process, sonication was 
performed three times on ice using a high-intensity ultra-
sonic processor (Scientz).

After sonication, the mixture was subjected to cen-
trifugation at 20,000 g at 4 °C for 10 min to remove any 
remaining debris. To precipitate the protein, the super-
natant was discarded, and the remaining solution was 
treated with cold 20% trichloroacetic acid (TCA) for 2 h 
at -20  °C. Following this, centrifugation was carried out 
at 12,000 g and 4 °C for 10 min, and the supernatant was 
discarded. The protein precipitate was then washed three 
times with cold acetone.

To prepare the protein for further analysis, the precipi-
tated protein was redissolved in 8  M urea. The protein 
concentration was determined using a BCA kit following 
the manufacturer’s instructions (Thermo Fisher Scien-
tific. Cat. No. 85165). For digestion, the protein solution 
was reduced by adding 5  mM dithiothreitol and incu-
bating at 56  °C for 30  min. Then, the protein sample 
was alkylated with 11 mM iodoacetamide for 15 min at 
room temperature in darkness. The urea concentration 
was subsequently reduced to less than 2  M by dilution. 
Finally, trypsin enzyme was added to the protein solu-
tion at a 1:50 trypsin-to-protein mass ratio for the first 
overnight digestion, followed by a second digestion with 
a 1:100 trypsin-to-protein mass ratio for 4 h.

Tandem mass tag (TMT)‑based quantitative proteomics
After trypsin digestion, the peptide was desalted by a 
Strata X C18 SPE column (Phenomenex) and vacuum 
dried. The peptide was reconstituted in 0.5  M TEAB 
and processed according to the manufacturer’s proto-
col for the TMT kit. Briefly, one unit of TMT reagents 
was thawed and reconstituted in acetonitrile. The pep-
tide mixtures were then incubated for 2  h at room 
temperature, pooled, desalted, and dried by vacuum 
centrifugation.
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The tryptic peptides were fractionated by high pH 
reverse-phase high-performance liquid chromatography 
(HPLC) using a Thermo Betasil C18 column (5 μm par-
ticles, 10 mm ID, 250 mm length). Briefly, peptides were 
first separated with a gradient of 8% to 32% acetonitrile 
(pH 9.0) over 60 min into 60 fractions. Then, the peptides 
were combined into 12 fractions and dried by vacuum 
centrifugation. The tryptic peptides were dissolved in 
0.1% formic acid (solvent A) and directly loaded onto a 
homemade reversed-phase analytical column. The gradi-
ent was comprised of an increase from 6 to 23% solvent B 
(0.1% formic acid in 98% acetonitrile) over 38 min, 23% to 
35% in 14 min and climbing to 80% in 4 min, then hold-
ing at 80% for the last 4 min, at a constant flow rate of 400 
nL/min on an EASY-nLC 1000 ultra-performance liquid 
chromatography (UPLC) system.

The peptides were subjected to an NSI source fol-
lowed by tandem mass spectrometry (MS/MS) in Q 
ExactiveTM Plus (Thermo, USA) coupled online to the 
UPLC. The electrospray voltage applied was 2.0 kV. The 
m/z scan range was 350 to 1000 for a full scan, and intact 
peptides were detected in the Orbitrap at a resolution of 
35,000. Peptides were then selected for MS/MS using the 
normalized collision energy (NCE) setting as 27, and the 
fragments were detected in the Orbitrap at a resolution 
of 17,500. A data-independent procedure that alternated 
between one MS scan followed by 20 MS/MS scans. 
Automatic gain control (AGC) was set at 3E6 for full MS 
and 1E5 for MS/MS. The maximum IT was set at 20 ms 
for full MS and auto for MS/MS. The isolation window 
for MS/MS was set at 2.0 m/z.

The resulting MS/MS data were processed using the 
MaxQuant search engine (v.1.5.2.8). Tandem mass spec-
tra were searched against the human UniProt database 
concatenated with the reverse decoy database. Trypsin/P 
was specified as a cleavage enzyme, allowing up to 2 miss-
ing cleavages. The mass tolerance for precursor ions was 
set as 20 ppm in the first search and 5 ppm in the main 
search, and the mass tolerance for fragment ions was set 
as 0.02 Da. Carbamidomethyl on Cys was specified as a 
fixed modification, and acetylation modification and oxi-
dation on Met were specified as variable modifications. 
The false discovery rate (FDR) was adjusted to < 1%, and 
the minimum score for modified peptides was set to > 40.

Parallel reaction monitoring (PRM)
Protein candidates with a more than 1.2-fold change and 
an adjusted P-value of less than 0.05 were selected for 
further validation by targeted liquid chromatography-
parallel reaction monitoring (LC-PRM) MS. The MS 
parameters for peptide identification were the same as 
described above.

The PRM data analysis was processed using Sky-
line (v.3.6). Peptide settings: enzyme was set as trypsin 
[KR/P]; maximum missed cleavage was set as 2; the pep-
tide length was set as 8–25, variable modification was set 
as carbamidomethyl on Cys and oxidation on Met, and 
max variable modifications were set as 3. Transition set-
tings: precursor charges were set as 2 and 3, ion charges 
were set as 1 and 2, and ion types were set as b, y, and p. 
The productions were set as from ion 3 to the last ion, 
and the ion match tolerance was set as 0.02 Da. The crite-
ria of two unique peptides, p < 0.05 and FDR less than 1% 
at the protein level, were used for protein identification.

Survival analysis of NSCLC patients using datasets 
from the public database
The prognostic value of mRNA expression of discov-
ered exosomal proteins in lung cancer was analyzed 
using the public microarray database Kaplan–Meier 
Plot (www. kmplot. com) with aggregate human patient 
data [39]. Lung cancer patients were divided into high 
and low expression groups in accordance with median 
expression. Information about overall survival (OS), 
progression-free survival (PFS), postprogression sur-
vival (PPS), the hazard ratio (HR) with 95% confidence 
intervals (CIs) and log-rank P values can be found at the 
K-M plotters. Analysis strategies for different combina-
tions of discovered proteins: median, split patients by 
median, only JetSet best probe set and use mean expres-
sion of selected genes. Statistical significance was ana-
lyzed using a two–tailed log rank test incorporated in 
the Kaplan–Meier Plot database, and p < 0.05 indicated a 
statistically significant difference.

Bioinformatics and statistical analysis
The supplementary materials provide a detailed descrip-
tion of the bioinformatic analysis steps. To identify 
potential biomarkers, gene set and pathway analyses were 
conducted using Ingenuity Pathway Analysis (IPA). Sta-
tistical significance was determined using appropriate 
methods, such as t-tests, ANOVA, SNK-q, and receiver 
operating characteristic (ROC) curve analysis by Graph-
Pad Prism (GraphPad Software, version 8.0, San Diego, 
CA, USA). The level of significance for the statistical tests 
was set at 0.05 (*), 0.01 (**) and 0.001 (***), and these val-
ues are reported in the figure legends.

Results
Characterization of plasma exosomes from NSCLC 
and healthy individuals
In this study, we analyzed a total of 57 plasma sam-
ples from NSCLC patients with metastasis (n = 19) and 
without metastasis (n = 32) and healthy subjects (n = 6). 
A detailed overview of the subjects can be found in 

http://www.kmplot.com
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Table  1. Exosomes were isolated from plasma samples 
using ultracentrifugation and subsequently character-
ized using multiple techniques. Transmission electron 
microscopy (TEM) analysis revealed the distinctive 
round, cup-shaped, vesicle-like structures of the iso-
lated exosomes, as depicted in Fig. 1A. To confirm the 
presence of exosomes, immunoblotting was performed 
to detect exosome marker proteins. The results demon-
strated the expression of CD63 and CD81 proteins in 
the exosome samples, whereas these proteins were not 
detected in plasma samples, as depicted in Fig. 1B. This 
confirmed the enrichment of exosomes in the isolated 
samples. Furthermore, SDS-PAGE analysis revealed 
significant differences in protein composition between 
the exosomes and plasma proteins, as illustrated in 
Fig. 1C. This indicated that the isolated exosomes har-
bored a distinct protein profile in comparison to the 
proteins present in plasma. Additionally, nanoparticle 
tracking analysis (NTA) was employed to determine 
the size distribution of the exosomes. The NTA results 
showed that the diameters of the exosomes ranged 
from approximately 30 to 150  nm, which is consistent 
with the typical size range of exosomes, as depicted in 
Fig.  1D. These findings further supported the success-
ful isolation of high-quality exosomes from the plasma 
samples of the patients. Overall, the combination of 
TEM, immunoblotting, SDS-PAGE, and NTA analy-
ses provided comprehensive evidence for the success-
ful isolation and characterization of exosomes from 
patient plasma. This comprehensive characterization 
confirmed their morphological features, marker pro-
tein expression, unique protein composition, and size 
distribution.

Exosomes in NSCLC patients with metastasis had larger 
particle sizes but decreased concentrations
Our investigation aimed to discern differences in the 
physicochemical attributes of plasma exosomes between 
NSCLC patients and healthy individuals. We employed 
NTA to assess the particle size and concentration of 
exosomes. Our findings unveiled notable distinctions 
in these characteristics between the two groups. Spe-
cifically, NSCLC patients exhibited larger particle sizes 
and lower concentrations of exosomes in comparison to 
healthy individuals, as shown in Fig. 2A and B. Further-
more, within the NSCLC patient subgroup, those with 
metastatic conditions displayed even more pronounced 
increases in particle size (as demonstrated in Fig.  2A). 
These results suggest that the particle size and concen-
tration of plasma exosomes could potentially serve as 
important indicators in the early diagnosis of NSCLC.

Comparative proteome contents of plasma exosomes 
in NSCLC patients with/without metastasis and healthy 
individuals
In this study, we employed tandem mass tag-based quan-
titative proteomics technology to analyze the protein 
composition of plasma exosomes derived from nonmet-
astatic (N) and metastatic (M) NSCLC patients, as well 
as healthy individuals (A). A total of 1220 proteins were 
identified in all plasma exosome samples, of which 1094 
proteins were quantifiable (Tab. S1). Significant differen-
tial protein expression among the groups was detected, 
with a threshold set at a fold change of 1.2 (p < 0.05), as 
detailed in Tab. S2. Specifically, 47 proteins were found to 
be upregulated and 116 proteins were downregulated in 
the comparison between M and A. Similarly, 28 proteins 

Table 1 The clinical information of healthy controls and lung cancer patients

Characteristics TMT + PRM TMT PRM

Health 
Individuals(n = 6)

Non‑metastasis 
NSCLC (n = 17)

Metastasis NSCLC(n = 7) Non‑metastasis 
NSCLC (n = 15)

Metastasis 
NSCLC(n = 12)

Age 48.00 ~ 55.00 50.00 ~ 65.00 51.00 ~ 58.00 51.00 ~ 65.00 52.00 ~ 67.00

Median ± SD 52.00 ± 2.90 57.47 ± 5.32 55.00 ± 2.58 58.60 ± 4.93 58.92 ± 4.27

Gender
 Male 3 (50%) 7 (41.18%) 4 (51.14%) 8(53.33%) 7(58.33%)

 Female 3 (50%) 10 (58.82%) 3 (42.86%) 7(46.67%) 5(41.67%)

 Ethnicity Asian Asian Asian Asian Asian

Smoking history
 Smoking 2 (33.33%) 7 (31.82%) 5 (71.43%) 3(20.00%) 2(16.67%)

 Non‑smoking 4 (66.67%) 15 (68.18%) 2 (28.57%) 12(80.00%) 10(83.33%)

Pathological types
 ADC — 22 (91.67%) 7 (100.00%) 12(80.00%) 11(91.67)

 SCC — 2 (8.33%) 0 (0.00%) 3(20.00%) 1(8.33%)
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were upregulated, and 30 proteins were downregulated in 
the M group when compared with N, while 65 proteins 
were upregulated, and 76 proteins were downregulated 
in N compared with A (Fig.  3A). Notably, there were 
both shared and unique differentially expressed proteins 
among the groups, as indicated by the Venn diagram 
analysis (see Fig. 3B and C).

To visualize the patterns of differential protein 
expression, we conducted heatmap analysis, which 
clearly delineated distinct expression profiles between 

the healthy group (A) and the metastatic (M) and non-
metastatic (N) groups (see Fig.  4A). Additionally, we 
performed Gene Ontology (GO) analysis to explore the 
functional roles of the differentially expressed proteins 
(see Figure S1). The results highlighted the predomi-
nant involvement of proteins related to the comple-
ment and coagulation cascade, platelet activation, and 
regulation of the immune response in the comparisons 
of N versus A, M versus N, and M versus A (see Fig. 4B 
and C). These findings suggest a potentially close 

Fig. 1 Characteristic proteins and morphology of exosomes. A TEM images of exosomes from representative plasma samples. B Western blot 
of CD63 and CD81 in the exosomes of seven representative samples. C SDS-PAGE of proteins from plasma supernatant and plasma exosomes. D 
Nanoparticle tracking analysis of the size distribution of representative exosomes
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association between abnormal coagulation function 
and the onset and metastasis of lung cancer (see Figure 
S2). The differential expression of proteins associated 

with these biological processes underscores their 
potential significance in the pathogenesis and progres-
sion of lung cancer.

Fig. 2 The size and concentration of isolated plasma exosomes in the NSCLC and healthy control groups. A The average size of exosomes in the A, 
N, and M groups. B The concentration of exosomes in the A, N, and M groups. (A: healthy control, N: nonmetastatic lung cancer, M: metastatic lung 
cancer). (SNK test, values of 0.05 (*), 0.01 (**) and 0.001 (***) were assumed as the level of significance for the statistical tests)

Fig. 3 Identification of candidate proteins in plasma exosomes. A The histogram results show the downregulated (blue) and upregulated (red) 
exosome proteins with a fold change greater than 1.2 and p-value < 0.05 in groups A, N and M, respectively. B Venn diagrams show the differentially 
expressed proteins among the groups and the overlapping proteins in the A, N, and M groups. Venn diagrams were generated using R. C Volcano 
plots showing the number of proteins identified for each group and proteins shared in each group. (A: healthy control, N: nonmetastatic lung 
cancer, M: metastatic lung cancer) (SNK test, values of 0.05 (*), 0.01 (**) and 0.001 (***) were assumed as the level of significance for the statistical 
tests)
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Fig. 4 The results showed the major cellular components and main functions of the components. A The heat map representing the quantitative 
analyses of all exosome proteins. B The results show the main functions of the components. C The major cellular components of isolated exosome 
proteins. (A: healthy control, N: nonmetastatic lung cancer, M: metastatic lung cancer). (SNK test, values of 0.05 (*), 0.01 (**) and 0.001 (***) were 
assumed as the level of significance for the statistical tests)
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Verification of diagnostic proteins in plasma exosome 
samples using PRM
To identify a panel of candidate markers that can serve 
as indicators of lung cancer occurrence and metasta-
sis, our study harnessed the parallel reaction monitor-
ing (PRM) technique to quantify the expression of 10 
selected proteins (detailed in Table  2) within plasma 
exosomes. This comprehensive analysis involved 
NSCLC patients with (n = 12) and without (n = 15) 
metastasis and healthy individuals (n = 6). PRM anal-
ysis revealed that recombinant complement factor 
H-related protein 5 (CFHR5), complement component 
9 (C9), and mannose-binding lectin 2 (MBL2) were 
significantly elevated in NSCLC patients with metas-
tasis compared to nonmetastatic NSCLC patients and 
healthy individuals (Fig.  5A). However, there was no 
statistically significant difference observed between 
nonmetastatic NSCLC patients and healthy individuals 
(Fig. 5A). Furthermore, the protein levels of fibrinogen 
beta chain (FGB), fibrinogen gamma chain (FGG), and 
von Willebrand factor (VWF) were markedly elevated 
in NSCLC patients, irrespective of metastatic status, 
when compared to control individuals (as depicted in 
Fig.  5A). Protein–protein interaction (PPI) analysis 
revealed that these six selected proteins were primar-
ily associated with key biological processes such as the 
complement and coagulation cascade, platelet acti-
vation, response to wounding, and humoral immune 
response (as shown in Fig. 5B). Based on these compel-
ling findings, it is suggested that a panel consisting of 
FGB, FGG, and VWF proteins within plasma exosomes 
holds potential as a marker for the early diagnosis of 
NSCLC. The CFHR5, C9, and MBL2 proteins could 
serve as indicators for assessing the metastatic status of 
NSCLC patients.

The predictability of two panels of candidate markers 
for the early diagnosis and metastasis of NSCLC
To evaluate the diagnostic value of each marker, receiver 
operating characteristic (ROC) curves were generated. 
The ROC analysis demonstrated that in plasma exosomes 
from NSCLC patients with metastasis, CFHR5, C9, and 
MBL2 exhibited area under the curve (AUC) values of 
0.855, 0.713, and 0.680, respectively, when compared 
to both the healthy control group and nonmetastatic 
NSCLC (Fig.  6A-C). Moreover, FGB, FGG, and VWF 
showed AUC values of 0.685, 0.672, and 0.647 (Fig. 6D-
F), respectively, in distinguishing NSCLC from the 
healthy control group.

To further assess the clinical significance of mRNA 
expression, we conducted survival analysis of survival 
(OS), progression-free survival (PFS), and post-progres-
sion survival (PPS) using the publicly available Kaplan–
Meier Plot database. The panel of CFHR5, C9, and 
MBL2 markers exhibited predictive capabilities for PFS 
in NSCLC patients (p < 0.05), and CFHR5 also showed 
significant predictive value for OS (p < 0.05), indicat-
ing its potential as a predictive biomarker for metastasis 
(Fig. 7A). Similarly, we examined the panel of FGB, FGG, 
and VWF markers, and all three candidates displayed 
significant predictive abilities for OS/PFS/PPS (p < 0.05), 
except for VWF, which failed to predict PPS (Fig.  7B). 
These findings suggest that the identified protein mark-
ers not only have predictive value for metastasis but also 
hold potential as biomarkers for early clinical diagno-
sis. Taken together, the results highlight the significance 
of the identified proteins as predictive biomarkers for 
metastasis in lung cancer. The identified panels of mark-
ers, including CFHR5, C9, MBL2, FGB, FGG, and VWF, 
exhibit diagnostic and prognostic capabilities, offer-
ing potential utility in guiding clinical decision-making 

Table 2 The selected proteins validated by PRM and discovered proteins

Protein ID MW [kDa] Gene Name M/A M/N N/A

Ratio (TMT) Ratio
(PRM)

p‑value
(PRM)

Ratio
(TMT)

Ratio
(PRM)

p‑value
(PRM)

Ratio
(TMT)

Ratio
(PRM)

p‑value
(PRM)

P02679 51.51 FGG 2.78 10.11 0.0009 1.54 1.30 0.3017 1.80 7.79 0.0480

P02675 55.93 FGB 2.67 7.41 0.0006 1.55 1.10 0.6350 1.72 6.75 0.0493

Q13201 138.11 MMRN1 1.19 0.94 0.9222 1.27 1.10 0.8581 0.93 0.85 0.7165

P05156 65.75 CFI 1.30 1.38 0.4708 1.61 1.44 0.3402 0.81 0.96 0.9401

P04275 309.26 VWF 2.55 9.89 0.0392 1.59 1.34 0.4106 1.61 7.37 0.1001

Q15485 34 FCN2 1.97 3.30 0.0904 1.97 1.25 0.5530 1.30 2.63 0.2956

P02748 63.173 C9 1.95 4.21 0.0359 1.62 1.34 0.3978 1.20 3.14 0.2085

Q9BXR6 64.42 CFHR5 1.87 5.07 0.0082 1.69 2.71 0.0039 1.11 1.87 0.3566

P11226 26.14 MBL2 1.84 4.12 0.0669 1.55 2.49 0.0187 1.19 1.65 0.2736

P43652 69.07 AFM 0.86 4.01 0.0880 0.70 2.63 0.0209 1.23 1.52 0.2294
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and patient management. These findings emphasize the 
importance of these proteins as promising candidates 
for the development of novel and effective biomarkers in 
lung cancer.

Discussion
Distant metastasis remains a major cause of mortal-
ity in lung cancer patients, and current methods for the 
early screening and prediction of metastasis using serum 
tumor markers have limitations in clinical decision-mak-
ing. Therefore, there is a critical need for more sensitive 
and perfect biomarkers in clinical practice. Exosome 
proteins provide new insights for the early screening and 
metastasis prediction of lung cancer. Exosomal proteins 

have been reported to be of great clinical value in the 
diagnosis, therapeutic targets and prediction of the ther-
apeutic efficacy of lung cancer [40]. Nevertheless, there is 
still a lack of noninvasive clinical biomarkers for the early 
screening and prediction of metastasis in lung cancer. In 
this study, we identified two panels of exosomal proteins 
that can be used as biomarkers for the early screening and 
prediction of metastasis in lung cancer. KEGG, GO and 
PPI analyses showed that the biological effects of these 
identified proteins involved platelet activation, comple-
ment system and coagulation cascades, and immune 
response. This information enhances our understand-
ing of the potential mechanisms underlying lung can-
cer metastasis and provides valuable insights for clinical 

Fig. 5 The relative intensity and PPI analysis of the discovered proteins. A Relative intensity analysis of the panel proteins to predict metastasis 
of NSCLC and diagnose early NSCLC. B PPI analysis of the six discovered proteins. (A: healthy control, N: nonmetastatic lung cancer, M: metastatic 
lung cancer). (Values of 0.05 (*), 0.01 (**) and 0.001 (***) were assumed as the level of significance for the statistical tests)
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applications. At the same time, we validated the clinical 
predictive ability of the identified proteins for metastasis 
and early screening via online databases. Although this 
is validated at the level of serum RNA, studies have sug-
gested that proteins in serum and exosomes have similar 
potential as biomarkers [41–43]. In short, these identified 
proteins provide evidence for early screening and thera-
peutic decision-making of lung cancer in the clinic.

Liquid biopsy is recognized as a non-invasive detec-
tion technology. Previous studies have found that long 
noncoding RNAs and microRNAs in exosomes can pro-
mote the progression of lung cancer and may serve as 
therapeutic targets for lung cancer [44, 45]. However, 
few studies have been performed on exosome protein 
as a marker of metastasis prediction. In this study, we 
first found that exosomes in lung cancer patients with 
metastasis had a larger size and lower concentration than 
those in healthy and non-metastatic groups. By TMT and 
PRM, we identified and validated a previously unreported 
panel of exosomal proteins, including CFHR5, C9, and 
MBL2, that can be used to predict metastasis in NSCLC. 
These identified proteins are associated with immune 
responses, both adaptive and innate [46–48]. CFHR5, a 
complement activating protein, has been identified as a 

significant factor in the development of liver metastasis 
originating from primary tumors of colorectal carcinoma 
[46, 49–53]. The present study provides evidence that 
CFHR5 may serve as a biomarker for the early prediction 
of metastasis in NSCLC. C9, which serves as a termi-
nal component of the complement pathway, is primar-
ily synthesized in the liver. Previous investigations have 
revealed that the levels of C9 protein in the plasma of 
patients with gastric and colorectal cancers exhibit a sub-
stantial increase [54, 55]. MBL2 is an essential constitu-
ent of the innate immune system and a member of the 
complement system. The protein recognizes and binds to 
mannose and N-acetylglucosamine, and this binding acti-
vates the classical complement pathway. A recent study 
discovered that plasma MBL2 levels were higher in the 
metastatic breast cancer group and were associated with 
poorer survival outcomes [56]. Similarly, elevated plasma 
MBL2 levels in colorectal cancer patients have been iden-
tified as an indicator of unfavorable patient survival [57]. 
Together, we have identified a panel of exosomal proteins 
associated with innate immunity that can predict lung 
cancer metastasis. The identification of these proteins as 
both biomarkers and potential therapeutic targets marks 

Fig. 6 ROC analysis of the identified exosomal proteins. A ROC curve analysis of CFHR5. B ROC curve analysis of C9. C ROC curve analysis of MBL2. 
D ROC curve analysis of FGB. E ROC curve analysis of FGG. F ROC curve analysis of VWF
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Fig. 7 Kaplan–Meier plots of the identified proteins. A Survival analyses of CFHR5, C9 and MBL2. B Survival analyses of FGG, FGB and VWF. (log-rank 
test: values of 0.05 (*), 0.01 (**) and 0.001 (***) were assumed as the level of significance for the statistical tests). HR, hazard ratio; OS, overall survival; 
PFS, progression-free survival; PPS, post-progression survival)
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a significant advancement in our battle against NSCLC 
metastasis.

Furthermore, we observed significantly increased lev-
els of FGB, FGG, and VWF proteins in plasma exosomes 
from NSCLC patients compared to healthy individuals. 
FGB and FGG, components of the extracellular matrix 
protein fibrinogen, are crucial for wound healing and 
hemostasis and function in tumor angiogenesis and 
metastasis. Kuang et al. conducted a study and revealed 
that FGB and FGG obtained from plasma exosomes hold 
potential as biomarkers to differentiate between benign 
and malignant pulmonary nodules. These biomarkers 
exhibited higher levels in the malignant group [58]. Fur-
thermore, the levels of FGB and FGG in exosomes have 
shown promise as early diagnostic markers for colorectal 
cancer and liver cancer [59, 60]. Moreover, high expres-
sion of FGB and FGG in tumor tissue has been associated 
with a poorer prognosis in patients with gastric, prostate, 
liver, and colorectal cancers [61–64]. VWF, a complex 
plasma glycoprotein that facilitates platelet attachment to 
the endothelium [65], plays a pivotal role in hemostasis, 
tumor progression, and metastasis. Multiple studies have 
demonstrated that elevated plasma levels of VWF are 
linked to a poorer prognosis in patients with liver can-
cer, breast cancer, and NSCLC [66, 67]. Additionally, the 
level of VWF can serve as a biomarker for the early diag-
nosis of liver cancer and lung adenocarcinoma [68, 69]. 
Our study showed that increased levels of FGB, FGG, and 
VWF proteins in plasma exosomes from NSCLC patients 
suggest their potential as noninvasive biomarkers for 
NSCLC. These findings contribute to the development of 
more effective diagnostic tools for lung cancer, ultimately 
improving patient care and outcomes.

Our study, like any research endeavor, has limita-
tions and strengths that necessitate a comprehen-
sive and unbiased interpretation. Drawing from our 
research experience and insights from previous publi-
cations [70, 71], we believe that the chosen sample size 
was appropriate, and we have successfully identified 
promising biomarkers capable of predicting NSCLC 
metastasis. However, to establish the clinical utility 
and robustness of these biomarkers, it is imperative 
to conduct further validation using a larger cohort of 
patients and healthy individuals. Additionally, delv-
ing into the molecular mechanisms underlying these 
biomarkers and exploring their potential as thera-
peutic targets in the context of NSCLC metastasis is 
of utmost importance. Furthermore, while our study 
primarily centered on exosomes for tumor and metas-
tasis prediction, we acknowledge the discrepancies in 
protein abundance between exosomes and non-exo-
some tissues. Despite our initial focus on exosomes for 
tumor and metastasis prediction, we are cognizant of 

the challenges tied to exosome analysis, both in terms 
of complexity and cost. Our forthcoming research will 
thus assess the predictive efficacy of these proteins not 
only in exosomes but also in serum and tumor tissues, 
enabling a more holistic clinical utility evaluation.

Nonetheless, our study reported several proteins 
identified from exosomes that hold the potential to 
serve as indicators in the diagnosis and prognosis of 
NSCLC. By unraveling the intricate workings of these 
biomarkers, we can attain a deeper comprehension of 
their roles in metastasis, thereby opening new avenues 
for targeted therapeutic interventions. Our work may 
ultimately contribute to evidence-based clinical deci-
sion-making, enabling individualized prognosis and the 
exploration of diverse combination therapy approaches. 
We hold the aspiration that this research will pave the 
way for improved patient outcomes and advancements 
in the management of NSCLC metastasis.

Conclusions
In summary, our study has identified two distinct pan-
els of plasma exosome proteins that hold significant 
implications for lung cancer management. The first 
panel, consisting of FGB, FGG, and VWF proteins, 
exhibits promise as a diagnostic tool for the early 
detection of lung cancer. The second panel, compris-
ing CFHR5, C9, and MBL2 proteins, shows potential 
in evaluating the occurrence of metastasis in patients 
with early-stage lung cancer. While further research is 
needed to validate the accuracy and reliability of these 
candidate proteins, our experimental data establish 
a strong correlation between exosome proteins and 
lung cancer metastasis. These findings underscore the 
potential of utilizing plasma exosome proteins as pre-
dictive biomarkers for metastasis, thus enhancing their 
application in cancer screening, monitoring, and clini-
cal management. By integrating these biomarkers into 
routine clinical practice, healthcare professionals can 
improve their ability to identify metastatic events and 
make well-informed treatment decisions, ultimately 
leading to improved patient outcomes.
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