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Abstract 

Background Deinococcus radiodurans is a robust bacterium that can withstand harsh environments that cause 
oxidative stress to macromolecules due to its cellular structure and physiological functions. Cells release extracellular 
vesicles for intercellular communication and the transfer of biological information; their payload reflects the status 
of the source cells. Yet, the biological role and mechanism of Deinococcus radiodurans‑derived extracellular vesicles 
remain unclear.

Aim This study investigated the protective effects of membrane vesicles derived from D. radiodurans (R1‑MVs) against 
 H2O2‑induced oxidative stress in HaCaT cells.

Results R1‑MVs were identified as 322 nm spherical molecules. Pretreatment with R1‑MVs inhibited  H2O2‑mediated 
apoptosis in HaCaT cells by suppressing the loss of mitochondrial membrane potential and reactive oxygen spe‑
cies (ROS) production. R1‑MVs increased the superoxide dismutase (SOD) and catalase (CAT) activities, restored 
glutathione (GSH) homeostasis, and reduced malondialdehyde (MDA) production in  H2O2‑exposed HaCaT cells. 
Moreover, the protective effect of R1‑MVs against  H2O2‑induced oxidative stress in HaCaT cells was dependent on the 
downregulation of mitogen‑activated protein kinase (MAPK) phosphorylation and the upregulation of the nuclear 
factor E2‑related factor 2 (Nrf2)/antioxidant response element (ARE) pathway. Furthermore, the weaker protective 
capabilities of R1‑MVs derived from ΔDR2577 mutant than that of the wild‑type R1‑MVs confirmed our inferences and 
indicated that SlpA protein plays a crucial role in R1‑MVs against  H2O2‑induced oxidative stress.

Conclusion Taken together, R1‑MVs exert significant protective effects against  H2O2‑induced oxidative stress in 
keratinocytes and have the potential to be applied in radiation‑induced oxidative stress models.
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Background
Deinococcus radiodurans is an extremophilic bacterium 
well known for its high level of resistance to ionizing radi-
ation [1]. Deinococcus radiodurans has evolved extremely 
effective radiation and oxidative stress protection sys-
tems, including passive and active defense mechanisms 
[2]. The genome of D. radiodurans is densely packaged 
and forms nucleoid with toroidal architecture, which 
may shield DNA from radiation and oxidative stress. In 
addition, Deinococcus-specific proteins, such as DdrB 
and IrrE/DdrO were involved in the repair and protec-
tion of DNA and protein [3, 4]. Importantly, D. radio-
durans can protect against oxidative stress that damages 
proteins, nucleic acids, and lipids by mediating effec-
tive redox homeostasis and scavenging reactive oxygen 
species (ROS) [5]. The cellular ROS-scavenging capac-
ity of D. radiodurans comprises antioxidant enzymes, 
including superoxide dismutase (SOD), catalase (CAT), 
peroxidase, peroxiredoxins, and thioredoxin, and non-
enzymatic antioxidants, such as accumulated  Mn2+, pyr-
roloquinoline–quinone, and deinoxanthin [6]. Based on 
these characteristics of D. radiodurans, various studies 
have explored its potential for biomedicine. For exam-
ple, deinoxanthin, a xanthophyll derived from Deinococ-
cus species, has attracted considerable attention because 
of its significant antioxidant effects and ROS scavenging 
activity [7, 8]. Exopolysaccharides produced by D. radio-
durans have been reported to scavenge  H2O2 and exert 
anti-apoptotic effects in human keratinocytes [9].

Membrane vesicles (MV) are lipid bilayer membrane-
enclosed nanovesicles produced by most bacteria, along 
with various biomolecules, such as proteins (including 
enzymes and transcriptional factors), lipids, nucleic acids, 
and metabolites [10, 11]. Bacterial MVs are secreted from 
the cell surface into the extracellular space and are called 
extracellular vesicles (EVs) [12]. EVs play crucial roles in 
intercellular communication by transferring bioactive 
components from donor to recipient cells and mediating 
various physiological and pathological processes, includ-
ing molecular transport, stress response mediation, and 
interaction with the host [13, 14]. EVs derived from path-
ogenic bacteria play a pathological role by delivering vir-
ulence factors and toxins to target cells [15]. In contrast, 
gut microbiota and probiotic-derived EVs induce fortifi-
cation of the gut barrier and suppress inflammation [16]. 
EVs mirror the physiological state of the parent cells and 
are used to deliver messages [17]. Therefore, EVs have 
been highlighted as potential diagnostic and therapeu-
tic agents that can be applied for various biological pro-
cesses, such as tissue signaling [18], immune modulation 
[19], metastasis spreading [20], and wound healing [21].

Although D. radiodurans is extremely resistant to oxi-
dative stress [5], the functionality of MVs derived from 

D. radiodurans has not been characterized. This study 
aimed to isolate and characterize D. radiodurans-derived 
MVs (R1-MVsMVs) and to identify the antioxidative 
properties of R1-MVsMVs against  H2O2-induced oxida-
tive stress in human keratinocytes.

Results
Isolation and characterization of MVs derived from D. 
radiodurans
R1-MVsMVs were isolated from cultured D. radiodurans 
supernatants via filtration and differential centrifugation. 
R1-MVs had an average diameter of 300  nm as deter-
mined by DLS analysis (Fig. 1A). In agreement with the 
DLS results, TEM and SEM analyses confirmed that the 
size of the R1-MVs ranged from 290 to 330 nm (Fig. 1B 
and C). Next, we confirmed the antioxidant activities 
of R1-MVs using DPPH and FRAP assay that R1-MVs 
(0.25–2  mg/mL) induced radical scavenging and ferric-
reducing abilities in a dose-dependent manner (Fig.  1D 
and E). These results suggested that R1-MVs have poten-
tial, direct and indirect, protective roles against oxidative 
stress.

R1‑MVs inhibit  H2O2 ‑induced cytotoxicity in HaCaT cells
Evaluation of the cytotoxicity of R1-MVs in HaCaT cells 
using the MTT assay demonstrated that treatment with 
R1-MVs for 18 h was not cytotoxic to HaCaT cells at con-
centrations of up to 30  μg/mL (Fig.  2A). Furthermore, 
exposure of HaCaT cells to different concentrations of 
 H2O2 (50, 100, 200, 300, 400, and 500 μM) showed that 
 H2O2 at 300  μM decreased cell viability to 70% com-
pared to that of the untreated group. Therefore, this 
concentration was used as the optimal dose to induce 
damage for all subsequent experiments (Fig.  2B). Pre-
treatment of HaCaT cells with the R1-MVs followed by 
 H2O2 treatment revealed that R1-MVs at 10 or 30 μg/mL 
increased viability of  H2O2-treated HaCaT cells dose-
dependently (Fig.  2C). The protective effect of R1-MVs 
in  H2O2-treated HaCaT cells was confirmed by morpho-
logical assessment using TUNEL staining.  H2O2-treated 
HaCaT cells showed severe nuclear fragmentation; 
however, pretreatment with R1-MVs at 10 or 30  μg/mL 
induced the inhibition of nuclear fragmentation (Fig. 2D). 
Therefore, R1-MVs have the potential to the protect 
against oxidative stress. The data show the mean ± SD 
(n = 3 samples) of three representative experiments.

Effects of R1‑MVs on the production of intracellular ROS
To identify the mechanism underlying the protective 
effect of R1-MVs against  H2O2, intracellular levels of ROS 
were assessed using DCF-DA. Endogenous ROS levels 
were assessed using confocal microscopy (Fig.  3A) and 
flow cytometry (Fig.  3B). Fluorescence intensity of the 
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HaCaT cells exposed to  H2O2 revealed a higher produc-
tion of intracellular ROS than that in the control group. 
However, treatment with R1-MVs (10 and 30  μg/mL) 
prior to  H2O2 treatment considerably reduced the pro-
duction of intracellular ROS (Fig. 3A and B). These results 
suggest that R1-MVs inhibit the production and accumu-
lation of intracellular ROS and alleviate  H2O2-induced 
oxidative stress in HaCaT cells.

Effects of R1‑MVs on MDA content, SOD and CAT activities, 
and GSH level
ROS overproduction can lead to lipid peroxidation, and 
MDA is a biomarker of lipid peroxidation [22]. Consid-
ering the mechanism of lipid peroxidation, we evaluated 
the effect of R1-MVs on  H2O2-induced MDA overpro-
duction in HaCaT cells. As shown in Fig. 4A, the MDA 
content was significantly increased after  H2O2 treat-
ment compared to that in the control group. Compared 
to the  H2O2-treated group, R1-MVs (5, 10, and 30  μg/
mL) pretreatment inhibited the increase in MDA content 
upon exposure to  H2O2 in HaCaT cells. Furthermore, to 
determine whether R1-MVs could inhibit  H2O2-induced 

oxidative stress by regulating the intracellular antioxidant 
system, the activities of SOD and CAT and the levels of 
GSH were measured [23–25].  H2O2 alone-treated HaCaT 
cells significantly increased oxidized glutathione (GSSG) 
content and decreased GSH, SOD, and CAT levels com-
pared to the control group. However, pretreatment with 
R1-MVs (10 and 30  μg/mL) considerably restored GSH 
homeostasis (increased GSH/GSSG ratio) and increased 
the activities of SOD and CAT (Fig. 4B–F). These results 
suggest that R1-MVs reduce MDA content and play an 
important role in maintaining membranes by suppress-
ing lipid peroxidation. In addition, R1-MVs can effec-
tively enhance antioxidant-related molecules, including 
the activities of SOD and CAT and the level of GSH.

Effects of R1‑MVs on mitochondrial membrane potential 
and apoptotic pathways in HaCaT cells
Excessive ROS exposure will disrupt the redox homeo-
stasis, leading to oxidative stress and ROS-mediated 
damage of biomolecules such as DNA and proteins as 
well as organelles including mitochondria. Increased 
cellular ROS levels induce the loss of MMP, a landmark 

Fig. 1 Isolation and characterization of extracellular vesicles (R1‑MVs) derived from Deinococcus radiodurans. A Size distribution of R1‑MVs 
determined using dynamic light scattering (DLS) analysis. B Morphology of R1‑MVs visualized by transmission electron microscopy (TEM). Scale 
bar = 500 nm. C Visualization of R1‑MVs using scanning electron microscopy (SEM). Scale bar = 200 nm. D and E The antioxidant activity of R1‑MVs 
analyzed using (D) DPPH and (E) FRAP assays
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in early apoptosis [26]. In healthy cells with a normal 
MMP, the JC-1 dye enters and forms red fluorescent 
J-aggregates. Meanwhile, in apoptotic cells, the JC-dye 
cannot penetrate the cells to induce the formation of 
J-aggregates and presents with green fluorescence instead 
[27]. Here, we assessed the ability of R1-MVs to repress 

the MMP drop induced by  H2O2 using a mitochondrial-
specific JC-1 probe [28]. The  H2O2-treated group showed 
a decreased red and increased green fluorescence, indi-
cating increased apoptosis. In contrast, pretreatment 
with R1-MVs (10 and 30  μg/mL) significantly increased 
red fluorescence and decreased green fluorescence, 

Fig. 2 Effects of R1‑MVs on  H2O2‑induced HaCaT cell damage. A Cytotoxicity of R1‑MVs (1, 5, 10, 30, 50 and 100 μg/mL) on HaCaT cells analyzed 
using MTT assay. B The cells were exposed to  H2O2 (50, 100, 200, 300, 400, and 500 μM) for 12 h, and the cell viability was assessed using MTT assay 
to assess the cytotoxicity and optimal dose of  H2O2. C HaCaT cells were pretreated with different concentrations of R1‑MVs (1, 5, 10, and 30 μg/
mL) for 12 h before exposure to  H2O2 (0.3 mM) for 12 h, and the cell viability was measured using MTT assay to assess the cytotoxicity and optimal 
dose of R1‑MVs. D HaCaT cells were stained with TUNEL and examined using a 20 × fluorescence microscope to assess inhibition of cell death by 
R1‑MVs. Scale bar: 50 μm. The fluorescence quantitative analysis using Image J software. The data show the mean ± SD (n = 4 samples) of three 
representative experiments. ##p < 0.01 or ###p < 0.001 vs. control group; *p < 0.05, **p < 0.01, or ***p < 0.001 vs.  H2O2‑treated group
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indicating a reduction in apoptotic cells in  H2O2-treated 
HaCaT cells (Fig.  5A and B). Since excessive ROS pro-
duction induced cell death, inhibition of ROS-induced 
apoptosis is important for maintaining cellular homeo-
stasis [29, 30]. To investigate whether pretreatment with 
R1-MVs suppressed the activation of the apoptosis sign-
aling pathway, the expression levels of various apoptotic 
indicators, including pro-apoptotic (BAX) and anti-apop-
totic (BCL-2) proteins, as well as cytochrome c, cleaved 
poly (ADP-ribose) polymerase (PARP), and cleaved cas-
pases-3, -8, and -9 in  H2O2-treated HaCaT cells were 
measured. The results showed that exposure to  H2O2 ele-
vated the expression of BAX and cytosolic cytochrome c, 
decreased the levels of BCL-2, and increased the cleav-
age of PARP and cleaved caspase (cleaved caspases-3, 
-8, and -9) in HaCaT cells. However, pretreatment with 
R1-MVs (10 and 30 μg/mL) before exposure to  H2O2 sig-
nificantly inhibited the upregulation of BAX, cytosolic 

cytochrome c, and caspases-3, -8, and -9, as well as PARP 
cleavage and downregulation of BCL-2 in a concentra-
tion-dependent manner (Fig. 5C and D). Taken together, 
R1-MVs exert an inhibitory effect on MMP loss and the 
apoptotic cascade cell death in  H2O2-induced oxidative 
stress in HaCaT cells.

Effects of R1‑MVs on MAPK signaling pathways associated 
with oxidative stress
Excessive ROS generation induced by  H2O2 can acti-
vate mitogen-activated protein kinase (MAPK) sign-
aling pathways [31]. MAPK pathways are activated by 
external stimulation and are related to the immune 
response, inflammation, and apoptosis [32]. To deter-
mine whether the protective effect of R1-MVs in 
HaCaT cells exposed to  H2O2 occurs via the regula-
tion of the MAPKs pathway, we evaluated the presence 
and absence of R1-MVs in  H2O2-stimulated HaCaT 

Fig. 3 Effects of R1‑MVs on intracellular ROS (fluorescence intensity) in  H2O2‑treated HaCaT cells. Cells were pretreated with different concentrations 
of R1‑MVs for 12 h followed by treatment with 0.3 mM  H2O2 for 12 h. A Intracellular ROS level detected by DCFH‑DA using fluorescence microscopy 
and quantitative analysis using ImageJ software. Scale bar: 50 μm. B Intracellular ROS level measured by DCFH‑DA using flow cytometry. ###p < 0.001 
vs. control group; *p < 0.05, **p < 0.01, or ***p < 0.001 vs.  H2O2‑treated group. The data show the mean ± SD (n = 4 samples) of three representative 
experiments
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cells. The results indicated that the phosphorylation 
of MAPKs (p38, ERK, and JNK) proteins induced by 
 H2O2 was decreased by pretreatment with R1-MVs 
(10 and 30  μg/mL) compared to  H2O2 alone-treated 
HaCaT cells (Fig. 6A and B). These results suggest that 
pretreatment with R1-MVs suppresses the abnormally 
activated MAPKs (p38, ERK, and JNK) signals induced 
by  H2O2 treatment. Therefore, it can be inferred that 
R1-MVs play a critical role in the protective mechanism 

via the inhibition of MAPK pathways in  H2O2-exposed 
cell injury in HaCaT cells.

R1‑MVs stimulated the level of Nrf2 in  H2O2 ‑induced 
oxidative stress in HaCaT cells
Nrf2 is a transcription factor that plays an important 
role in the expression of phase II antioxidant enzymes, 
which are regulated by antioxidant response elements 
(ARE), to prevent oxidative stress-induced cell damage 
[33, 34]. Kelch-like ECH-associated protein 1 (Keap1) 

Fig. 4 Effect of R1‑MVs on the activities of antioxidant enzymes (SOD and CAT), level of GSH, and MDA content in  H2O2‑treated HaCaT cells. 
Cells were pretreated with different concentrations of R1‑MVs (5, 10, and 30 μg/mL) for 12 h, followed by treatment with 0.3 mM  H2O2 for 12 h. 
A Malondialdehyde (MDA) content, (B) oxidized glutathione (GSSG) content, (C) glutathione (GSH) content, (D) GSH/GSSG ratio, (E) superoxide 
dismutase (SOD) activity, and (F) catalase (CAT) activity assessed in HaCaT cells. ###p < 0.001 vs. control group; *p < 0.05, **p < 0.01, or ***p < 0.001 vs. 
 H2O2‑treated group. The data show the mean ± SD (n = 4 samples) of three representative experiments
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was identified as an NRF2 repressor that was up-regu-
lated in response to oxidative stress, thereby inhibiting 
NRF2 [35]. To determine whether the Nrf2/ARE signal-
ing pathway is involved in the oxidative protection abil-
ity of R1-MVs, the effect of R1-MVs on the protein level 
of Nrf2 in the cytoplasm and nucleus was assessed using 
western blotting. Pretreatment with R1-MVs (10 and 

30 μg/mL) significantly enhanced the expression of Nrf2 
in HaCaT cells exposed to  H2O2. In addition, pretreat-
ment with R1-MVs (10 and 30 μg/mL) decreased the pro-
tein level of Nrf2 and Keap1 in the cytoplasm of HaCaT 
cells exposed to  H2O2. In contrast, Nrf2 expression in the 
nucleus was enhanced by pretreatment with R1-MVs (10 
and 30 μg/mL) in HaCaT cells exposed to  H2O2 (Fig. 7A 

Fig. 5 Effect of R1‑MVs on MMP and expression of apoptotic proteins in  H2O2‑treated HaCaT cells. HaCaT cells were pre‑processed with R1‑MVs at 
different concentrations (10 and 30 μg/mL) for 12 h prior to exposure to  H2O2 (0.3 mM) for 12 h. A The change in MMP was detected by JC‑1 using 
a 20 × laser scanning confocal microscope. Scale bar: 50 nm. B Percentage of fluorescence intensity specific value of the red/green quantified by 
ImageJ software. Significance: ###p < 0.001 vs. control; *p < 0.05 and **p < 0.01 vs.  H2O2‑treated group. C Expression of proteins related to apoptosis 
signals using specific antibodies against Bax, Bcl‑2, Cytochrome C (cytosol), Cleaved Caspase 3, Cleaved Caspase 8, Cleaved Caspase 9, Cleaved poly 
(ADP‑ribose) polymerase (PARP), and β‑actin. D The relative band intensity of each protein evaluated using ImageJ software and expressed as a 
percentage. ###p < 0.001 vs. control group; *p < 0.05, **p < 0.01, or ***p < 0.001 vs.  H2O2‑treated group. The values are mean ± SD (n = 4 samples) of 
three representative experiments
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Fig. 6 Effects of R1‑MVs on the activation of the MAPK pathway in  H2O2‑treated HaCaT cells. HaCaT cells were pre‑processed with R1‑MVs at 
different concentrations (10 and 30 μg/mL) for 12 h prior to exposure to  H2O2 (0.3 mM) for 12 h. A The expression of phosphor‑p38 (p‑p38), p38, 
p‑ERK, ERK, p‑JNK, JNK, and β‑actin was measured using western blotting analysis. B The relative MAPK band intensity of each protein evaluated 
using ImageJ is expressed as a percentage. ###p < 0.001 vs. control group; *p < 0.05, **p < 0.01, or ***p < 0.001 vs.  H2O2‑treated group. The data show 
the mean ± SD (n = 4 samples) of three representative experiments

Fig. 7 Effect of R1‑MVs on the Nrf2/ARE pathway in  H2O2‑treated HaCaT cells. HaCaT cells were pre‑processed with R1‑MVs at different 
concentrations (10 and 30 μg/mL) for 12 h prior to exposure to  H2O2 (0.3 mM) for 12 h. A The expression of Nrf2 and Keap1 in the cytoplasm 
and nucleus and the total levels of Nrf2 measured using western blotting analysis. B The relative Nrf2 and Keap1 band intensity of each protein 
evaluated using ImageJ software and expressed as a percentage. *p < 0.05 or ***p < 0.001 vs.  H2O2‑treated group. The data show the mean ± SD 
(n = 4 samples) of three representative experiments
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and B). These results suggest that pretreatment with 
R1-MVs promote Nrf2 translocation from the cytoplasm 
to the nucleus, thereby attaining elevated binding ability 
to the downstream genes.

MVs isolated from R1 DR2577 deletion mutant strain 
(ΔDR2577) are sensitive to  H2O2 ‑induced oxidative stress 
compared to MVs isolated from R1 wild‑type strain
SlpA (DR2577) is a major S-layer component that binds 
to the carotenoid deinoxanthin, a powerful antioxidant 
molecule of the radioresistant bacterium D. radiodurans 
[36, 37]. Based on the protective effect of R1-MVs against 
 H2O2-induced oxidative stress, we hypothesized that 
MVs isolated from ΔDR2577 (ΔDR2577 R1-MVs) would 

have a decreased protective effect against  H2O2. We pre-
treated HaCaT cells with Δ DR2577 R1-MVs or R1-MVs 
followed by  H2O2 treatment and assessed cell death 
using Annexin V/PI staining and MTT assay to confirm 
this hypothesis. The results indicated that pretreatment 
with R1-MVs (30 μg/mL) had a protective effect against 
 H2O2-induced oxidative stress; however, the protec-
tive ability of ΔDR2577 R1-MVs (30 μg/mL) was signifi-
cantly (necrosis; **p < 0.01, late apoptosis; ***p < 0.001, 
early apoptosis; *p < 0.05) lower than that of R1-MVs 
(Fig. 8A). In addition, to identify the mechanism under-
lying the protective effect of R1-MVs against  H2O2 in 
HaCaT cells, MitoSOX-based flow cytometry was con-
ducted to detect mitochondrial ROS levels. Interestingly, 

Fig. 8 Effect of R1 DR2577 mutant strain (ΔDR2577) MVs isolated from ΔDR2577 (ΔDR2577 R1‑MVs) against  H2O2‑induced oxidative stress. HaCaT 
cells were pre‑processed with R1‑MVs (30 μg/mL) or ΔDR2577 R1‑MVs (30 μg/mL) for 12 h prior to exposure to  H2O2 (0.3 mM) for 12 h. A Protective 
effect of MVs (R1 and ΔDR2577) against  H2O2‑induced oxidative stress in HaCaT cells assessed using annexin V/propidium iodide (PI) staining  (PI+ 
cells, necrosis;  AnnexinV+PI+ cells, late apoptosis;  AnnexinV+ cells, early apoptosis). B Mitochondrial ROS scavenging effect of MVs (R1 and ΔDR2577) 
assessed using the Mitosox™ fluorescence probe in  H2O2 exposed to HaCaT cells. ###p < 0.001 vs. control group; *p < 0.05, **p < 0.01, or ***p < 0.001 
vs.  H2O2‑treated group; *p < 0.05, **p < 0.01, or ***p < 0.001 vs.  H2O2/ΔDR2577 R1‑MVs‑treated group. The values show the mean ± SD (n = 4 samples) 
of three representative experiments
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the ROS scavenging ability of ΔDR2577 R1-MVs (30 μg/
mL) against  H2O2-induced radical generation was nota-
bly (***p < 0.001) weaker than that of R1-MVs (30  μg/
mL) (Fig. 8B). Taken together, considering the protective 
effect of R1-MVs against  H2O2-induced oxidative stress, 
these results suggest that SlpA plays an important role 
in the protective mechanism against oxidative stress in 
R1-MVs.

Discussion
In the present study, we successfully isolated and char-
acterized MVs derived from D. radiodurans, and dem-
onstrated that R1-MVs have antioxidant properties and 
ROS scavenging potential. Furthermore, we also dem-
onstrated that R1-MVs protect against  H2O2-induced 
oxidative damage in HaCaT cells. This protection may 
be related to the modulation of the MAPK and Nrf2/
ARE signaling pathways and the mitochondrial apoptotic 
pathway associated with oxidative stress. Furthermore, 
by comparing the effect of R1-MVs with that of ΔDR2577 
R1-MVs, we showed that the SlpA (DR2577) protein is 
important in regulating the protective roles of R1-MVs 
against  H2O2-induced oxidative stress in HaCaT cells. 
To our knowledge, this is the first study to suggest that 
MVs derived from D. radiodurans exert protective effects 
against oxidative stress in keratinocytes.

Oxidative stress is a disturbance in the prooxidant-
antioxidant balance in the body, which can disrupt redox 
signaling and control and/or cause molecular damage 
[38, 39]. Overproduction of aerobic metabolites, such as 
superoxide anion radicals, hydroxyl radicals, and  H2O2, 
causes the pathogenesis of various diseases, such as met-
abolic and chronic disorders and cancers [40, 41].  H2O2 
is one of the most common stimulators used to establish 
oxidative stress models [42]. It can diffuse throughout 
the mitochondria and cross cell membranes, generating 
excessive ROS, leading to lipid peroxidation and biomo-
lecular denaturation [43]. MDA is a stable end-product of 
lipid peroxidation, a marker of oxidative stress [44]. SOD, 
CAT, and GSH are enzymatic and non-enzymatic anti-
oxidant molecules that protect cells from radical attack 
and play important roles in antioxidant defense against 
oxidative stress [45–47]. Pretreatment with R1-MVs 
increased HaCaT cell viability, decreased the intracel-
lular levels of ROS, enhanced the activities of enzymatic 
antioxidants (SOD and CAT) and GSH levels, and sup-
pressed the release of MDA. These results indicated 
that R1-MVs could alleviate the cell damage induced by 
 H2O2 via fortifying the antioxidant activities of HaCaT 
cells. In addition, mitochondria play a crucial role in cel-
lular metabolism, signaling, and death pathways [48, 49]. 
ROS-mediated oxidative stress can induce mitochondrial 
damage, resulting in the reduced MMP and activation of 

mitochondrial apoptosis programs [50, 51]. This study 
showed that pretreatment with R1-MVs significantly 
inhibited the decrease in MMP in HaCaT cells exposed 
to  H2O2. Furthermore, we assessed the anti-apoptotic 
effects of R1-MVs via a Bax/Bcl2-dependant pathway, 
which suggested that R1-MVs regulate the mitochondrial 
caspase-related apoptotic pathway.

The MAPK and Nrf2/ARE signaling pathways are asso-
ciated with oxidative stress and antioxidant activities 
[52, 53]. Oxidative stress due to increased ROS produc-
tion can activate MAPK signaling pathways via the acti-
vation of ERK, JNK, and p38 MAPK signaling proteins 
were involved in apoptosis via ROS generation [54–56]. 
In addition, as an antioxidant stress modulator, Nrf2 
can be activated by excessive ROS exposure, and plays 
significant roles in the body’s antioxidant defenses [57]. 
Therefore, these two pathways can be used as an index 
factor when discovering new antioxidative substances 
[52, 58]. We found that R1-MVs suppressed the activa-
tion of ERK1/2, JNK, and p38 proteins induced by  H2O2 
in HaCaT cells. In addition, R1-MVs induced the accu-
mulation of Nrf2 in the cell nucleus. These results indi-
cate that R1-MVs may lead to Nrf2 translocation into 
the nucleus, which can promote binding to the ARE 
promoter and activate the transcription of antioxidant 
genes [59, 60]. Taken together, these results suggest that 
R1-MVs could regulate the Nrf2 pathway by promoting 
Nrf2 translocation from the cytoplasm to the nucleus 
thereby upregulating the Nrf2/ARE signaling pathway, 
which can subsequently restore the GSH homeostasis as 
well as increase the activities of CAT and SOD to sup-
press oxidative damage in HaCaT cells.

S-layers, which are external layers composed of a pro-
teinaceous coat, play an important role in the protec-
tive mechanism of D. radiodurans against oxidative 
stress. Several studies have demonstrated that the S-layer 
deinoxanthin binding complex (SDBC) is resistant to 
UV and is thermostable, thereby playing a protective 
role in D. radiodurans [37, 61, 62]. This complex con-
sists of the protein DR2577, a major surface layer con-
stituent, and its cofactor deinoxanthin [37]. As the MVs 
reflect the characteristics of source cells [63], we hypoth-
esized that MVs derived from R1 DR2577 (SlpA) mutant 
strain (DR2577 R1-MVs) have a weaker protective effect 
against  H2O2-induced oxidative stress in HaCaT cells 
than R1-MVs. In the present study, we constructed a 
DR2577 mutant strain by deleting the SlpA protein and 
investigated the protective abilities of DR2577 R1-MVs 
compared to R1-MVs. The results showed that DR2577 
R1-MVs decreased the cytoprotective and ROS scav-
enging effects against  H2O2-induced oxidative stress in 
HaCaT cells compared to R1-MVs. These results suggest 
that SDBC, especially DR2577, plays an important role in 
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regulating the protective mechanism of R1-MVs against 
oxidative stress.

Collectively, R1-MVs exerted a strong protective effect 
against  H2O2-induced oxidative stress in HaCaT cells. 
Given that oxidative stress is associated with several 
complications, the antioxidation protection of R1-MVs 
was of considerable interest to medicine and public 
health. A comprehensive outlook on strategies involv-
ing R1-MVs for combating oxidative stress may open 
new avenues for novel therapeutics. Therefore, R1-MVs 
could be applied to ROS-mediated inflammatory diseases 
as well as the development of radioprotectors. However, 
the lack of omics analysis of bioactive molecules, such 
as proteins, lipids, and nucleic acids in R1-MVs is the 
limitation of our study. This analysis is needed to eluci-
date the specific molecules related to the antioxidative 
properties in R1-MVs. In future research, we will focus 
on conducting an omics study of R1-MVs. Furthermore, 
we have planned animal studies to investigate whether 
R1-MVs have potential as radioprotective materials in a 
total-body irradiation mouse model. These approaches 
might be anticipated because of the antioxidative prop-
erties of R1-MVs, as well as the therapeutic potential of 
MVs by themselves or as vehicles for the delivery of drug 
payload [64].

Conclusions
In conclusion, we report for the first time the protec-
tive roles of MVs derived from D. radiodurans against 
 H2O2-induced oxidative stress in HaCaT cells. The aver-
age diameter of R1-MVs, as analyzed by DLS, TEM, and 
SEM, was approximately 322 nm. Furthermore, we dem-
onstrated that R1-MVs had a significant protective effect 
against  H2O2-induced oxidative damage in HaCaT cells. 
These protective features may be related to the inhibition 
of the phosphorylation of MAPK signaling pathways to 
suppress mitochondrial dysfunction, as well as the acti-
vation of the Nrf2/ARE signaling pathway to increase 
antioxidant activity and decrease ROS generation in 
HaCaT cells. MVs derived from the R1 DR2577 mutant 
strain had a weaker protective effect against oxidative 
stress than those derived from wild-type R1, implying 
that SlpA protein plays a crucial role in R1-MVs against 
 H2O2-induced oxidative stress.

Material and methods
Bacterial strain and culture conditions
Deinococcus radiodurans R1 (ATCC 13939) was 
obtained from the American Type Culture Collec-
tion (ATCC) and were cultured at 30  °C in tryptone 
glucose yeast extract (TGY) broth comprising 0.5% 
tryptone (Difco Laboratories, Detroit, MI, USA), 0.3% 
yeast extract (Difco Laboratories), and 0.1% glucose 

(Sigma–Aldrich, St. Louis, MO, USA) or on TGY plates 
with 1.5% Bacto-agar (Difco Laboratories). Antibiotics 
(8  μg/mL kanamycin; Sigma–Aldrich) were added to 
the medium, if necessary.

Isolation and purification of R1‑MVs
Deinococcus radiodurans strains were grown at 30 °C for 
72 h under static conditions for isolation and purification 
of the R1-MVs. Briefly, after culturing in TGY broth for 
72  h, the bacteria-free culture supernatants were har-
vested by centrifugation (10,000 × g, 30  min, 4  °C). The 
supernatant was filtered through a 0.45  μm bottle-top 
vacuum filter system (Corning, Merck KGaA, Darmstadt, 
Germany) using a Minimate™ tangential flow filtration 
(TFF) system with an Omega™ 300  K membrane cap-
sule (Pall Scientific, NY, USA). The R1-EV pellets were 
harvested by ultracentrifugation (100,000 × g, 2  h, 4  °C), 
washed in sterile phosphate buffer saline (PBS; pH 7.4), 
and then purified by centrifugation using Optiprep den-
sity gradient medium (Sigma, #D1556, Steinheim, Ger-
many). The R1-MVs were purified by ultracentrifugation 
(18  h, 170,000 × g, 4  °C; under no brake condition) in a 
discontinuous 60% Optiprep density gradient medium 
[step gradient ranging from 10 to 60% (w/v)]. The final 
MV pellet was resuspended in PBS and stored at − 80 °C. 
The protein content of R1-MVs was assessed using a 
bicinchoninic acid (BCA) protein assay kit (Thermo Sci-
entific Pierce, Rockford, IL, USA) according to the manu-
facturer’s instructions.

Characterization of R1‑MVs
The hydrodynamic size of the R1-MVs was analyzed by 
dynamic light scattering (DLS) using a Zetasizer Nano 
ZS Zen3600 (Malvern, UK). For transmission electron 
microscopy (TEM), the samples were dispersed in etha-
nol, mounted onto a carbon support film on a 150-mesh 
nickel grid, and dried. For field-emission transmission 
electron microscopy (FE-TEM), the analysis was per-
formed using a field-emission transmission electron 
microscope (JEM-2100F; JEOL Ltd., Japan) at an acceler-
ation voltage of 200 kV. The samples were fixed with 3.7% 
glutaraldehyde (Sigma–Aldrich GmbH, Taufkirchen, 
Germany) in PBS for 15 min and used for scanning elec-
tron microscopy using an ESEM Quanta 400 scanning 
electron microscope (FEI, Hillsboro, Oregon, USA). After 
washing twice with PBS, the fixed samples were dehy-
drated using an ascending sequence of ethanol (40%, 
60%, 80%, and 96–98%). After evaporation of ethanol, the 
samples were left to dry at room temperature (RT) for 
24 h on a glass substrate and then analyzed by SEM after 
gold–palladium sputtering.
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Cell culture conditions
The immortalized human epidermal keratinocyte 
(HaCaT) cell line was obtained from Lonza and Korean 
Cell Line Bank (Seoul, Korea). The HaCaT cells were cul-
tured in Dulbecco’s Modified Eagle’s Medium (DMEM; 
Biowest, Nuaille, France) supplemented with 10% fetal 
bovine serum (FBS, Biowest), and 1% penicillin and 
streptomycin (P/S, GIBCO, Carlsbad, CA, USA) at 37 °C 
in a humidified chamber with 5%  CO2.

2‑diphenyl‑1‑picrylhydrazyl (DPPH) radical scavenging 
assay
Assays using DPPH (Sigma-Aldrich) were carried out to 
investigate the free radical scavenging activity of R1-MVs. 
Briefly, 100 μL of the DPPH solution was added to 100 μL 
of R1-MVs (15.6, 31.3, 62.5, and 125 μg/mL). The mixture 
was incubated for 30 min at RT in the dark. DPPH solu-
tion is decolorized from deep violet to light yellow, upon 
receiving a hydrogen atom from an antioxidant sample. 
Absorbance was measured at 520 nm using a microplate 
reader (Biotek, Winooski, VT, USA). Vitamin C (300 μM) 
was used as a positive control. All measurements were 
performed in triplicate. The percent scavenging activity 
(%SA) was calculated using the following equation:

Ferric‑reducing/antioxidant power (FRAP) assay
The FRAP assay was conducted as previously described 
[65]. The method is based on the reduction of a ferric 
2,4,6-tripyridyl-s triazine complex  (Fe3+-TPTZ) by anti-
oxidants to the ferrous form  (Fe2+-TPTZ). Briefly, the 
FRAP reagent (Sigma-Aldrich) comprising 10 mM TPTZ 
(ferrous iron) and 40  mM HCl was added to 300  mM 
sodium acetate buffer (pH 3.6) at 37 °C for 15 min. Reac-
tions were started by adding 750 μL freshly prepared 
FRAP reagent to 50 μL R1-MVs. Vitamin C (300 μM) was 
used as a positive control. The absorbance was measured 
at 593 nm using a microplate reader (Biotek). All meas-
urements were performed in triplicate.

Effects of R1‑MVs on cell viability of HaCaT keratinocytes
The viability of R1-MVs-treated HaCaT cells was assessed 
using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetra-
zolium bromide (MTT; Sigma-Aldrich) assay [66]. 
HaCaT cells were cultured at a density of 3 ×  104 cells/well 
in 96-well plates and incubated at 37  °C for 24  h. After 
culturing, the medium was discarded, and the cells were 
washed with PBS. The cells were treated with R1-MVs 
at concentrations of 1, 5, 10, 30, 50, and 100 μg/mL for 
12 h. As a positive control, 0.5% DMSO was used. After 
culturing, the cells were washed, and MTT (0.5 mg/mL) 
was added to the wells at 37 °C for 4 h. Subsequently, the 

%SA = [(Asample − Ablank)/Ablank] × 100

media was discarded, and 150 μL DMSO was added to 
each well to solubilize the formazan crystals. Formazan 
absorbance was analyzed at 540  nm using a microplate 
reader (Biotek). The viability of HaCaT cells is presented 
as a percentage of the control cell group.

Effects of  H2O2 on cell viability of HaCaT keratinocytes
To determine the optimal concentration of  H2O2 that 
induced oxidative damage in  vitro, HaCaT cells were 
treated with different concentrations of  H2O2 (50, 100, 
200, 300, 400, and 500 μM) for 12 h, and cell viability was 
measured using the MTT assay. Next, 300 μM  H2O2 cor-
respond to 70% cell viability and were chosen as optimal 
injury concentration.

Determination of effect of R1‑MVs on the viability of HaCaT 
cells under  H2O2 ‑induced oxidative stress
To explore the protective effects of R1-MVs against oxi-
dative stress, HaCaT cells were pretreated with nomi-
nal concentrations of R1-MVs (1, 5, 10, 30 and 50  μg/
mL) for 12  h before  H2O2-induced oxidative damage. 
The cells were then exposed to  H2O2 (0.3 mM) for 12 h, 
and HaCaT cell viability was detected using the MTT 
method.

Terminal deoxynucleotidyl transferase dUTP nick‑end 
labeling (TUNEL) assay
HaCaT cells were seeded on glass slides for 24 h and then 
exposed to  H2O2 (0.3 mM) in the presence or absence of 
R1-MVs for 12 h. The cells were fixed in 3.7% paraform-
aldehyde in 1 × PBS buffer for 30 min and were then per-
meabilized in 0.2% Triton X-100/PBS (Sigma, Germany) 
for 5 min. The glass slides were washed twice using PBS 
and 100 μL of the Equilibration Buffer was added for 
10 min at 4 °C. Thereafter, the samples were cultured in 
50 μL of TdT reaction mixture for 1 h at 37 °C in the dark. 
To stop the reaction, the glass slides were immersed in 
2 × SSC for 15 min. Finally, DAPI nuclear stain was added 
along with a mounting medium and the samples were 
analyzed using a confocal laser scanning microscope 
(LSM510, Carl Zeiss, Jena, Germany).

Determination of intracellular ROS contents in HaCaT cells
HaCaT cells were sequentially treated with R1-MVs 
(10 and 30 μg/mL) and  H2O2 (0.3 mM) for 12 and 12 h, 
respectively. Subsequently, the supernatant was aspirated 
and cultured in an FBS-free medium containing dichlo-
rodihydrofluorescein diacetate (DCFH-DA) (100 μM) for 
30  min at 37  °C in the dark. Fluorescence intensity was 
analyzed using a confocal laser scanning microscope 
(LSM510), and quantitative analysis was performed using 
the ImageJ software. For flow cytometry analysis, the 
cells were detached by trypsinization (Trypsin–EDTA, 
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Gibco, Paisley, UK) and resuspended in PBS. The fluo-
rescence intensity of oxidized DCF was detected using a 
FACSVerse™ flow cytometer and FlowJo software.

Measurement of the intracellular antioxidant molecules 
and malondialdehyde (MDA) levels
HaCaT cells were seeded at 1.0 ×  107 cells/well in a 
100  mm dish for 24  h. After washing with serum-free 
media, the cells were treated with different concentra-
tions of R1-MVs (5, 10, and 30  μg/mL) for 12  h. Then, 
 H2O2 (0.3 mM) was added, and the cells were incubated 
at 37 °C for 12 h. A lysis buffer was used to resuspend the 
cells at 4  °C for 5  min after culturing, followed by cen-
trifugation at 13,000 × g at 4  °C for 5  min to determine 
antioxidant molecule activities and MDA levels in the cell 
lysate. The activities of SOD, CAT, glutathione (GSH), 
and the level of MDA were measured using respective 
assay kits (BioVision, Milpitas, CA, USA).

Detection of changes in the mitochondrial membrane 
potential (MMP)
MMP changes were measured using the JC-1 probe. JC-1 
emits red fluorescence in non-apoptotic cells and green 
fluorescence in apoptotic or necrotic cells. Briefly, HaCaT 
cells were cultured on glass coverslips coated with poly-
L-lysine (0.5  mg/mL)-coated glass coverslips for 12  h. 
After incubation, the cells were pretreated with R1-MVs 
(10 and 30  μg/mL) and exposed to  H2O2 (0.3  mM) for 
12 and 12  h, respectively. The medium was aspirated 
and incubated with 10  μg/mL of JC-1 (Thermo Fisher 
Scientific, Waltham, MA, USA) solution for 20  min at 
37  °C in the dark, aspirated with the staining solution, 
and resuspended in the PBS. The fluorescence intensity 
was assessed using a confocal laser scanning microscope 
(LSM510). Red fluorescent JC-1 aggregates were detected 
by a 561  nm PE channel, while the monomeric green 
fluorescent form of JC-1 was detected by a 488 nm FITC 
channel. Quantification of JC-1 fluorescence was per-
formed using the ImageJ software. The results are repre-
sented as a percentage of the control cells.

Western blotting analysis
HaCaT cells were seeded in a 6-well plate and treated with 
 H2O2 (0.3  mM) in the presence or absence of R1-MVs 
(10 and 30 μg/mL). Cytosolic and nuclear proteins were 
extracted using cell lysis buffer (RIPA buffer, Pierce, 
Rockford, IL, USA) and the CelLytic NuCLEAR Extrac-
tion Kit (Sigma-Aldrich), respectively. Protein concentra-
tion was measured using the BCA protein assay. Proteins 
were isolated using 10% SDS–PAGE and electrically 
transferred to polyvinylidene difluoride (PVDF) mem-
branes. The membranes were blocked with 5% skim milk 
and incubated with the respective primary antibodies 

(1:1000 dilution; anti-Bcl-2, anti-Bax, anti-cytochrome 
C, anti-cleaved-caspase 3, anti-cleaved-caspase 8, anti-
cleaved-caspase 9, anti-PARP, anti-p38, anti-ERK, anti-
JNK, anti-p38, phosphorylated (p)-ERK, p-JNK, p-p38, 
Nrf2, β-actin, and anti-α-tubulin antibodies) overnight 
at 4  °C. Thereafter, the membranes were incubated with 
an HRP-conjugated secondary antibody (anti-rabbit Ab, 
1:5000 dilution) for 1  h at RT. Proteins were visualized 
using an electrochemiluminescence advance kit (Milli-
pore, Merck KGaA, Darmstadt, Germany). Primary and 
secondary antibodies were purchased from Cell Signaling 
Technology (Danvers, MA, USA) and Calbiochem (San 
Diego, CA, USA), respectively.

ΔDR2577 deletion mutant construction
ΔDR2577 deletion mutants were constructed using the 
deletion mutagenesis method as previously described 
[67]. Briefly, polymerase chain reaction (PCR)-amplified 
fragments from the upstream and downstream regions 
of DR2577 were digested with the appropriate restric-
tion enzymes and ligated into the corresponding sites of 
pKatAPH3. The recombinant plasmid was then trans-
formed into D. radiodurans cells. The mutant strains 
were selected on TGY agar plates (0.5% tryptone, 0.3% 
yeast extract, and 0.1% glucose) supplemented with 8 μg/
mL kanamycin (Sigma-Aldrich). All constructs were con-
firmed using diagnostic PCR and nucleotide sequencing. 
The primers used in this study are listed in Table S1.

Annexin V and propidium iodide (PI) staining
To investigate apoptosis, HaCaT cells were treated with 
30  μg/mL of R1-MVs or ΔDR2577-R1-MVs for 12  h 
prior to treatment with  H2O2 (0.3 mM) for 12 h at 37 °C 
and were analyzed using Annexin V/PI staining (BD 
Bioscience, San Jose, CA, USA). Cells were harvested 
and stained with annexin V (1:50 dilution with annexin 
V binding buffer, BD Bioscience, San Jose, CA, USA) 
for 15  min at RT. After washing with annexin V bind-
ing buffer, cells were stained with PI (1:25 dilution with 
annexin V binding buffer) for 10 min at RT. Necrotic, late 
apoptotic, and apoptotic cell death were assessed by ana-
lyzing cells positive for Annexin V, PI, or both, respec-
tively, using a FACSverse cytometer and FlowJo software 
(V10, BD Bioscience).

Determination of mitochondrial ROS contents in HaCaT 
cells
The generation of ROS by mitochondria was analyzed 
using the MitoSOX mitochondrial superoxide indicator 
(Thermo Fisher Scientific). HaCaT cells were incubated 
with R1-MVs (30  μg/mL) or ΔDR2577-R1-MVs (30  μg/
mL) for 12 h prior to treatment with  H2O2 (0.3 mM) for 
12 h at 37 °C The HaCaT cells were cultured with 5 μM 
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MitoSOX reagent for 10 min at 37 °C in the dark, washed, 
and resuspended in PBS. The samples were analyzed 
using a FACSverse cytometer and FlowJo software (V10, 
BD Biosciences).

Statistical analysis
Statistical analyses were performed using Tukey’s multi-
ple comparison test or an unpaired t-test using GraphPad 
Prism 7 (2018, GraphPad, San Diego, CA, USA). Data are 
expressed as the mean ± SD. P-values of < 0.05 were con-
sidered statistically significant.
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