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Abstract 

Background Deep learning has been extensively used in digital histopathology. The purpose of this study was to 
test deep learning (DL) algorithms for predicting the vital status of whole‑slide image (WSI) of uveal melanoma (UM).

Methods We developed a deep learning model (Google‑net) to predict the vital status of UM patients from histo‑
pathological images in TCGA‑UVM cohort and validated it in an internal cohort. The histopathological DL features 
extracted from the model and then were applied to classify UM patients into two subtypes. The differences between 
two subtypes in clinical outcomes, tumor mutation, and microenvironment, and probability of drug therapeutic 
response were investigated further.

Results We observed that the developed DL model can achieve a high accuracy of >  = 90% for patches and WSIs 
prediction. Using 14 histopathological DL features, we successfully classified UM patients into Cluster1 and Cluster2 
subtypes. Compared to Cluster2, patients in the Cluster1 subtype have a poor survival outcome, increased expression 
levels of immune‑checkpoint genes, higher immune‑infiltration of CD8 + T cell and CD4 + T cells, and more sensitiv‑
ity to anti‑PD‑1 therapy. Besides, we established and verified prognostic histopathological DL‑signature and gene‑
signature which outperformed the traditional clinical features. Finally, a well‑performed nomogram combining the 
DL‑signature and gene‑signature was constructed to predict the mortality of UM patients.

Conclusions Our findings suggest that DL model can accurately predict vital status in UM patents just using his‑
topathological images. We found out two subgroups based on histopathological DL features, which may in favor of 
immunotherapy and chemotherapy. Finally, a well‑performing nomogram that combines DL‑signature and gene‑
signature was constructed to give a more straightforward and reliable prognosis for UM patients in treatment and 
management.

Keywords Deep learning, Histopathological images, Prognosis, Uveal melanoma, Subtype

Introduction
Although less frequent than cutaneous melanoma, uveal 
melanoma (UM) is the most prevalent type of primary 
malignancy in adult eyes. UM occurs for just 5% of all 
melanomas, but it causes 13% of melanoma-related 
deaths [1]. The prevalence of UM has been connected to 
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a number of parameters like age, race, iris color, and so 
on [2, 3]. Despite treatment for UM at the primary stage, 
approximately half of the patients have metastases, with 
the liver being the most frequent metastatic location. 
After metastasis, the median survival time is decreased 
to 1 year [4, 5]. Despite the fact that various eye-sparing 
therapies, such as radiation, transpupillary thermother-
apy, and photodynamic therapy, have emerged in recent 
years, their outcomes are not always ideal due to chal-
lenges in understanding their pathophysiology.

The prognosis of UM, like that of many other types of 
tumors, is highly reliant on timely detection and treat-
ment [6]. With the rising practical application of new 
therapeutic strategies, current research is mostly focused 
on the discovery of novel prognostic signatures, which 
are commonly utilized to  assess the risk of certain can-
cers and early diagnosis [7, 8]. Prognostic indicators, such 
as the patient’s age, tumor location, size, and tumor histo-
pathological and genetic characteristics, are all important 
factors for primary UM [9]. The use of prognostic indi-
cators in clinical settings can help to steer risk patients 
through specific therapy and care, and perhaps avert life-
threatening metastases [10–12]. For example, prior stud-
ies struggled to identify relevant mRNAs, microRNAs, or 
DNA methylation combinations as biomarkers to predict 
UM survival using bioinformatics [13–15]. In terms of 
UM cell morphological types, UM can be classified into 
three subtypes: epithelioid, spindle, and mixed cell types. 
The epithelioid cells type accounts for roughly 3–5% of 
all UM and is linked with the worst outcome. Spindle cell 
type comprises over 40% of all UM and is associated with 
better prognosis [16, 17]. The identification of histologic 
types in UM is critical for tumor prognosis and therapy 
[18]. This emphasizes the critical need for innovative 
strategies to classify UM subtypes that are consistently 
related to prognosis.

Furthermore, pathology procedures frequently entail 
arduous and time-consuming stages that can result in 
mistakes and negatively impact healthcare [18]. Recent 
advances in artificial intelligence have produced excep-
tional performances on diagnostic and prognostic 
tasks [19]. Deep learning, for example, has been widely 
employed in digital histopathology for applications such 
as cancer classification, cell identification, and patient 
outcome stratification in whole-slide images (WSIs) 
[20–23]. With the advantage of deep learning and the 
availability of large numbers of histology slides, there is a 
novel chance to reassess traditional techniques to predict 
the diagnosis and prognosis of patients [24, 25]. However, 
this technique is often hard to interpret. To solve these 
restrictions, we combined transcriptome datasets and 
employed bioinformatic analysis to explore the patho-
genic mechanism on a genomic scale.

In this work, we created a deep learning model to pre-
dict the vital status of UM from histopathological images. 
Based on deep learning features, UM patients were suc-
cessfully classified into two subtypes with distinct molec-
ular characteristics and survival outcomes. According 
to histopathological classification, we constructed a his-
topathologic deep learning-signature, gene-signature as 
well as nomogram which might guide the prognosis and 
immunotherapy prediction of UM patients.

Materials and methods
UM cohort collection
In this work, we first acquired 80 whole-slide images 
(WSIs) of UM from TCGA-UVM cohort, deposited in 
The Cancer Genome Atlas database, which was further 
assigned two labels: alive or dead status. The paired RNA-
seq of 80 UM samples were utilized to explore the poten-
tial gene signature by bioinformatic analysis. Besides, the 
outside UM cohorts were retrieved from open-access 
resources (Gene Expression Omnibus and ArrayExpress 
databases) and internal dataset. The following strate-
gies were used to find appropriate cohorts: 1) the sample 
belongs to a human being; 2) the cohort included survival 
data; 3) the cohort contained RNA-seq or whole-slide 
images of Hematoxylin and Eosin (H&E) staining; and 4) 
these cohorts were derived from several separate studies. 
According to the selection criterion, four open-accessed 
UM cohorts (GSE22138, GSE27831, GSE84976, and 
E-MTAB-4097) and one internal UM cohort (HX cohort) 
were included in our study. The internal UM cohort (67 
samples) was consecutively recruited by the Ophthalmol-
ogy department of West China Hospital, Chengdu, China 
from 2009 to 2016. The simplified procedure for the cur-
rent study was displayed in Fig. 1.

WSIs annotation and processing
To largely avoid the effect of irrelevant areas and reduce 
the effort of the classification system, professional pathol-
ogists manually marked regions of uveal melanoma (ROI) 
on WSIs by using the following guidelines: (1) the can-
cer cells should comprise more than 80% of ROI and (2) 
evident interfering features such as creases, hemorrhage, 
necrosis, and hazy regions should be avoided. Qupath 
(v.0.2.3) was used to conduct the annotation. Consider-
ing the extraordinarily huge picture size of WSIs (usu-
ally 100,000*80,000 pixels), the WSIs were cropped into 
numerous patches. Next, patches with more than 50% 
overlap of the melanoma ROI were selected for subse-
quently analyze. The WSIs generally contained a number 
of patches ranging from 325 to 2633 in TCGA-UVM. The 
TCGA-UVM cohort was randomly classified into sepa-
rate train and validation datasets (7:3 ratio) (Table 1). The 
train dataset was employed for model development and 
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Fig. 1 The simplified procedure for the current study

Table 1 Clinical information of train and validation datasets in TCGA_UVM cohort and HX cohort. IQR means interquartile range

Datasets

level train validation HX cohort p test

n 56 24 67

futime (median [IQR]) 759.50 [466.25, 1159.75] 816.00 [352.00, 1290.25] 1590.00 [555.00, 2280.00] 1.93E‑04 Kruskal–Wallis Test

fustat (median [IQR]) 0.00 [0.00, 1.00] 0.00 [0.00, 1.00] 0.00 [0.00, 0.00] 9.57E‑01 Kruskal–Wallis Test

age (median [IQR]) 60.00 [49.75, 74.00] 64.00 [54.00, 76.00] 52.00 [41.00, 59.00] 2.89E‑05 Kruskal–Wallis Test

gender (%) female 24 (42.9) 11 (45.8) 31 (46.3) 9.26E‑01 Chisq Test

male 32 (57.1) 13 (54.2) 36 (53.7)

stage (%) Stage II 26 (46.4) 10 (41.7) — 3.21E‑01 Chisq Test

Stage III 26 (46.4) 14 (58.3) —

Stage IV 4 (7.1) 0 (0.0) —

histological_type (%) epithelioid 9 (16.1) 4 (16.7) 25 (37.3) 5.48E‑03 Chisq Test

mixed 27 (48.2) 10 (41.7) 13 (19.4)

spindle 20 (35.7) 10 (41.7) 29 (43.3)

chromosome.3.status (%) disomy 25 (44.6) 13 (54.2) — 5.91E‑01 Chisq Test

monosomy 31 (55.4) 11 (45.8) —

MetStatus (%) Metastatic 20 (35.7) 6 (25.0) 18 (26.9) 4.79E‑01 Chisq Test

Non‑metastatic 36 (64.3) 18 (75.0) 49 (73.1)

vital_status (%) alive 40 (71.4) 17 (70.8) 51 (76.1) 8.00E‑01 Chisq Test

dead 16 (28.6) 7 (29.2) 16 (23.9)

SCNA_Cluster (%) A 8 (14.3) 7 (29.2) — 2.78E‑01 Chisq Test

B 17 (30.4) 6 (25.0) —

C 18 (32.1) 4 (16.7) —

D 13 (23.2) 7 (29.2) —
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hyperparameter tuning, meanwhile the validation data-
set and internal UM cohort were utilized to assess gen-
eralization performance. For training patches, both data 
augmentation and normalization were used, however just 
normalization was used for validated patches. Random 
affine transformation and horizontal flipping of patches 
were employed in our study for data augmentations. The 
enhanced patches were center cropped to 224 * 224 pix-
els after z-score normalization on RGB channels.

Deep‑learning (DL) feature extraction and selection
The WSIs correlated with UM in TCGA-UVM and HX 
cohorts were firstly cropped into patches without over-
lap. We subsequently performed a weakly supervised 
method to trained a Google-net model for 50 epochs by 
using WSI-level labels for supervision. The optimizer was 
SGD with a learning rate of 10–2 and L2 regularization of 
10–5. Then, this classifier (Google-net model) was used 
to label all the patches in the WSI and store the labels 
in a heatmap, representing the probability score of each 
patch. Due to the WSIs contained numerous patches, we 
assembled the probably patches into a probably heatmap 
of WSI, which was then applied to estimate the histo-
pathologic DL features based on histogram of patch like-
lihood. The histopathological DL features were defined as 
the structures data come from histogram of patch likeli-
hood. For removing redundant DL features, Pearson cor-
relation analysis was firstly performed. If the coefficient 
of two features was larger than 0.9, one of the feature will 
be eliminated. Following that, to identify important DL 
features, we split the histopathological DL features in 
TCGA-UVM cohort into training and testing sets and 
standardized the data. Next, we trained a Lasso regres-
sion model on the training dataset. When using Lasso 
for feature selection, we first need to select an optimal 
regularization parameter value and the corresponding 
L1 penalty coefficient. We further select the features with 
coefficients > 0 and assess the importance of each feature 
based on its weight coefficients in the Lasso model. The 
larger the parameter estimate (absolute value), the higher 
the importance of that feature. Finally, retrain the model 
using the selected feature subset and evaluate the perfor-
mance on the testing set. Based on these feature vectors, 
7 traditional machine learning classifiers (SVM, KNN, 
Decision-Tree, Random-Forest, Extra-Tree, XGBoost, 
and LightGBM) were then trained to predict the vital sta-
tus for each WSI.

Unsupervised cluster of DL features
To perform unsupervised clustering, the identified 
important DL features from TCGA-UVM cohort were 
first extracted. Next, hierarchical clustering in the "Class-
Discovery" package was to identify a potentially relevant 

subtype of UM. To compare the prognosis of subgroups 
defined by DL features, Kaplan–Meier (K-M) curves were 
used. Besides, to discover the underlined cancer hallmark 
pathways associated with a subtype of UM, we conducted 
gene set variation analysis (GSVA) method to assess 
the pathway activities using Cancer Hallmark set (h.all.
v7.0.symbols) in MSigDB (https:// www. gsea- msigdb. org).

Landscape of mutated and immune characteristics in UM 
subtype
Two methods were usually used for decoding the 
immune microenvironment (ESTIMATE and CIB-
ERSORT). The "ESTIMATE" approach was generally 
applied to estimate the total infiltrated immune score, 
stromal score, estimate score, and tumor purity in tumor 
tissue. The "CIBERSORT" approach was used to quan-
tify the proportion of 22 distinct kinds of immune cells 
in the UM tumor microenvironment based on 1,000 per-
mutations of the LM22 signature. We initially used the 
ESTIMATE and CIBERSORT approach to examine the 
immune score, estimate score and tumor purity, and rela-
tive percentages of 22 different kinds of immune cells in 
UVM patients. The different immune microenvironment 
characteristics and expression of immune checkpoint 
genes between UM subtypes were subsequently investi-
gated. Moreover, UM patients, in particular, may benefit 
from subtype-specific mutations as a therapy target. As 
a result, we compared the mutational frequency, Micro-
satellite instability (MSI), mutation burden (TMB), and 
mutated signatures between UM subtypes. Eventually, a 
DL-signature was developed by Multivariate Cox mod-
eling, and DL-signature associated scores for each patient 
were produced by the formula: n

k=1
(βk* Ek).

Immunotherapy response and potential drugs prediction
To test distinct immunotherapy responses between UM 
subtypes, three previous melanoma cohorts including the 
Chen et al. study [26], Prat A et al. study [27], and Hugo 
et al. study [28], which treated with anti-CTLA-4 or anti-
PD-1 treatment was acquired and analyzed. The base-
line features of the three cohorts were listed in Table S1. 
These cohorts’ gene expression patterns, as well as immu-
notherapy response data, were collected from published 
research. To predict the response of immunotherapy in 
UM subtypes, Subclass Mapping (SubMap) analyses were 
used to assess the gene expression similarity between the 
UM subtypes (Cluster 1 and Cluster 2) and the previous 
melanoma patients with various anti-CTLA-4 and anti-
PD-1 therapeutic responses. Furthermore, in comparison 
with gene expression patterns of drugs collected from the 
Connectivity Map, we can systematically compute a ther-
apeutic score. Drugs with significantly lower scores, the 
more likely this drug is to reverse the molecular features 

https://www.gsea-msigdb.org
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of the disease, and hence may suggest potential therapeu-
tic possibilities [29].

Identification and validation of histopathologic 
gene‑signature
Firstly, the ‘Limma’ package in R software was employed 
to identify differentially expressed genes (DEGs) between 
UM subgroups. The selection of survival-related DEGs 
were subjected to univariate Cox regression analysis. 
In addition, we performed 1000 iterations of Lasso-
penalized analysis to narrow down the list of important 
histopathologic genes. Combined with the AUCs of 
gene combinations, we finally select the candidate gene 
signatures. Multivariate Cox modeling was used to cre-
ate a gene-signature, and gene-signature correlated risk 
score for each patient was produced by the formula: ∑

n

k=1
(βk* Ek) . UM Patients’ risk scores were individually 

assessed in five independent UM cohorts (TCGA-UVM, 
GSE27831, GSE22138, GSE84976, and E-MTAB-4097). 
The median risk score was employed to categorize 
patients as high-risk or low-risk. The K-M curves were 
drawn and log-rank tests were used to examine the dif-
ferent significance in survival outcomes between the two 
groups. The AUC value calculated by the time-dependent 
receiver operating characteristic (ROC) curve was used 
to assess the prediction performance of the histopatho-
logic gene-signature in the prognostic model. Further-
more, the concordance index (C-index) was conducted 
to assess the predictive power of the DL-signature, his-
topathologic gene-signature, and conventional clinical 
factors.

Statistical analysis
R (version 4.0.3) or Python (version 3.8.0) with installed 
packages were used for all statistical studies. All deep 
learning frameworks were implemented via Pytorch 
(version 1.10.1) in Python on an Nvidia GeForce RTX-
3080 GPU workstation with 10 GB of memory. Python’s 
"sklearn" package was used to run the machine learn-
ing algorithms. The "survival" and “survivalROC” pack-
ages in R were used to perform K-M and ROC curves. 
The “ClassDiscovery” package in R was used to conduct 
unsupervised clustering. “CIBERSORT” and “estimate” 
packages in R were employed to assess the immune 
microenvironment. The Pearson coefficients were used 
to evaluate the correlation test. In comparison with more 
than two groups, the Kruskal–Wallis test was employed, 

whereas the Wilcoxon test was used for comparison 
between the two groups. The chi-square test was used 
to investigate the relationships between subgroups and 
clinicopathological features. The Cox regression analysis 
yielded hazard ratios (HRs) and 95% confidence intervals 
(CIs). All statistical tests were considered significant with 
a p < 0.05.

Results
Performance of the histopathological classifier
The histopathological classifier was developed in the 
train dataset, and then verified in the validation dataset 
and HX cohort, which contained two successive steps: 
patches prediction and WSIs prediction. To summarize, 
WSIs were firstly annotated to identify the tumor area 
(ROI). The ROI was cropped into patches, which were 
then input into a deep learning network (Google-net) to 
predict vital status at the level of patches. Second, a his-
togram of patches likelihood was used to integrate mul-
tiple probable patches into a whole probably heatmap of 
WSI. Eventually, we applied multiple machine learnings 
to predict the UM patient’s vital status.

The performance of the histopathological classifier 
was evaluated using the TCGA-UVM validation dataset. 
Two typical probably heatmaps that respectively fore-
cast patch levels for dead and alive status (Fig.  2A). As 
the number of training iterations increases, the train-
ing accuracy converges near 90% at the first 2000 itera-
tions (Fig.  2B). The confusion matrix illustrated that 
the Google-net model achieved a high accuracy of 90% 
(Fig.  2C). Besides, the ROC curve and Precision-Recall 
curve showed that our model performed a RAUC of 
0.885 (Fig. 2D) and a PAUC of 0.911 (Fig. 2E). In the HX 
cohort, our model also performed well with a RAUC of 
0.991 (Fig. 2F) and a PAUC of 0.994 (Fig. 2G).

Subsequently, we extracted 379 deep learning (DL) 
features from the histogram of patches likelihood 
(Table S2). After the Pearson correlation analysis, 268 
DL features were retained for LASSO-penalized fea-
ture selection. When the penalization lambda is 0.091, 
we found the LASSO model has the lowest mean 
squared error (MSE) (Fig.  3A). Based on the selected 
criterion of lambda, there were 14 DL features with 
a coefficient > 0 (Fig.  3B). Finally, the LASSO-penal-
ized model identified 14 DL features, and the relative 
importance of DL features were illustrated in Fig. 3C. 
Afterwards, the 14 DL features were put into seven 

(See figure on next page.)
Fig. 2 The deep learning (Google‑net) model for patches prediction. A Probably heatmaps of alive and dead status at the stage of patches 
prediction. The color bars represent the vital status probability of each patch. B The accuracy curve of deep learning model training. C The 
confusion matrix of deep learning model. D The ROC curve and AUC value (RAUC) of deep learning model in TCGA‑UVM cohort. E The 
Precision‑Recall curve and AUC value (PAUC) of deep learning model in TCGA‑UVM cohort. F The RAUC of deep learning model in HX cohort. G The 
PAUC of deep learning model in HX cohort
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Fig. 2 (See legend on previous page.)
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traditional machine learning classifiers with tenfold 
cross-validation. The AUCs distribution of seven 
machine learning classifiers suggested that the SVM 
classifier has the highest AUCs (Fig. 3D). The accuracy 
of different machine learning methods in train and test 
datasets was manifested in Fig.  3E. The ROC curves 
indicated that the AUCs of SVM and Extra-Trees clas-
sifiers achieved 1 (Fig.  3F). The model was also vali-
dated in the HX cohort and the result revealed that the 
AUCs of SVM and Extra-Trees classifiers were 1 and 
0.95, respectively (Fig.  3G). The confusion matrix of 
the SVM classifier was shown in Fig. 3H. The detailed 
parameters (Accuracy, AUC, Sensitivity, Specificity, 
PPV, NPV, Precision, and Recall) for the assessment of 
models were listed in Table S3.

Unsupervised cluster of DL features
The 14 DL features were further conducted to inves-
tigate the key clusters in the TCGA-UVM cohort. By 
using unsupervised clustering (k = 2), we were able 
to identify two stable subtypes: Cluster1 (38 UM 
patients) and Cluster2 (52 UM patients). A compre-
hensive heatmap was created to show the link between 
subtypes and clinical features (Fig. 4A). The chi-square 
tests determined significant differences in metastasis, 
histological type, and vital status between subtypes 
(Table 2). Furthermore, K-M curves demonstrated that 
UM patients in Cluster1 have a lower survival prob-
ability than the Cluster2 subtype, following log-rank 
test p = 0.0019 (Fig.  4B). The boxplot uncovered that 
almost all of the 14 DL features (apart from DL-229 
and DL-333) were significantly different distributed 
between alive and dead status (Fig.  4C). GSVA was 
used to examine biochemical pathways shared by dis-
tinct Cluster1/Cluster2 subtypes. A heatmap of 50 
cancer Hallmark pathways was visualized to explore 
the different expressions between Cluster1 and Clus-
ter2 subtypes (Fig. 4D). The Wilcoxon tests discovered 
that 10 cancer Hallmark pathways were differentially 
expressed between two subtypes, which included glyc-
olysis, hypoxia, IL2-STAT5-signaling, ILl6-JAK-STAT5 
signaling, MTORC1 signaling, notch signaling, peroxi-
some, reactive oxygen species pathway, spermatogen-
esis, and unfolded protein response.

Landscape of mutated and immune characteristics in UM 
subtype
To detect subtype-specific mutations in UM, the "maftools" 
package in R software was initially used to generate onco-
Print plots of the top popular mutant genes in TCGA-UVM 
cohort, which contained GNAQ (50%), GNA11 (45%), 
SF3B1 (22%), BAP1 (16%), EIF1AX (12%) … (Fig.  4E). 
Among the frequently mutated genes, we observed that 
Cluster2 enriched more mutations of SF3B1(Cluster2: 
Cluster1 = 13:5), and EIF1AX (Cluster2: Cluster1 = 8:2), 
while Cluster1 subtype harbored more mutations of (Clus-
ter2: Cluster1 = 10:12). However, the forest plot revealed 
that these mutated genes have no significant differences 
between Cluster2 and Cluster1subtypes (Fig.  4I). Besides, 
Tumor mutation burden (TMB) and Microsatellite insta-
bility (MSI) have emerged as promising biomarkers for the 
prediction of various tumor types, prognosis, and treat-
ment response. As a consequence, TMB (Fig. 4F) and MSI 
(Fig.  4G) were compared between two subtypes, and the 
Wilcoxon tests found that there were no significant differ-
ences. According to recent tumor genomics research, the 
APOBEC signature is one of the most prominent muta-
tional signatures in tumors. In addition, Other top muta-
tional signatures in primary tumors such as signature 1 
(age-related), signature 2 (APOBEC-mediated activities), 
and signature 13 (APOBEC-mediated processes) were also 
included in our analyses. The box plot indicated that only 
signature 2 and APOBEC signature have significant differ-
ences between Cluster2 and Cluster1 subtypes (Fig. 4H).

Additionally, we exhibited a complete heatmap contain-
ing 22 types of immune cells, immune-associated bio-
markers, and immune-checkpoint genes to investigate 
subtype-specific immunophenotypes (Fig.  5A). According 
to the Wilcoxon tests, the immune score, and ESTIMATE 
score were considerably enriched in the Cluster1 subtype, 
whereas the Cluster2 subtype has higher tumor purity the 
han Cluster1 subtype. Meanwhile, the Cluster1 subtype 
had high levels of immune-checkpoint gene expression. 
The CD8 T cells, ncells B cell, and CD4 memory resting T 
cells were heavily infiltrated in the Cluster1 subtype.

Immunotherapy response and potential drugs prediction
The landscape of immune characteristics indicated that 
the Cluster1 subtype is an immune-hot subtype, there-
fore, we speculated that the Cluster1 subtype may be more 

Fig. 3 The deep learning features selection. A The distribution of the lowest mean squared error (MSE) with the corresponding penalization lambda 
value in LASSO‑penalized model. B LASSO coefficient profiles of all deep learning features and the selected criterion of lambda. C Feature weight 
bar chart for the LASSO‑penalized model. D The AUCs distribution of seven machine learning classifiers (SVM, KNN, Decision‑Tree, Random‑Forest, 
Extra‑Tree, XGBoost, and LightGBM) with tenfold cross‑validation. E The accuracy distribution of seven machine learning classifiers in train and test 
datasets. F The ROC curves of 7 machine learnings in TCGA‑UVM cohort. G The ROC curves of 7 machine learnings in HX cohort. H The confusion 
matrix of SVM classifier in TCGA‑UVM cohort

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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promising to respond of immunotherapy. To prove our 
observation, SubMap analysis was employed to compare 
the expression patterns of the Cluster1/Cluster2 subtypes 
with previously published datasets of melanoma patients 
who accepted anti-CTLA-4 and/or anti-PD-1 therapies. 
Compared to anti-CTLA-4 therapy, we surprisingly dis-
covered that the Cluster1 subtype was more respond to 
anti-PD-1 treatment (p-value = 0.00; Bonferroni corrected 
p-value = 0.01) (Fig. 5B). To validate this result, participants 
in Prat A et al. study, and Hugo et al. study who received 
anti-PD-1 treatment were divided into four subgroups 
(complete response: CR; partial response: PR; progressive 
disease: PD; stable disease: SD). Notably, we discovered 
that the Cluster1 subtype was more promising to achieve 
complete response for anti-PD-1 therapy regardless in 
Prat A et al. study (p-value = 0.04; Fig. 5C) and Hugo et al. 
study (p-value = 0.05; Fig. 5D). Moreover, to discover novel 
therapeutic drugs for UM, we compared gene expression 

patterns of 1288 drugs in the Connectivity Map and 
found that five potential drugs contained 4.5.dianilinoph-
thalimide (score = -1), STOCK1N.35874 (score = -0.793), 
arachidonyltrifluoromethane (score = -0.093), TTNPB 
(score = -0.088), and W.13 (score = -0.034) were promising 
to treat UM patients (Fig. 5E).

Construction of histopathologic DL‑signature 
and gene‑signature
Via multivariate Cox modeling, we constructed a DL-
signature based on the relative score of 14 DL features 
in TCGA-UVM cohort. A comprehensive risk-heatmap 
was visualized to display the distribution of risk scores 
for patients in TCGA-UVM cohort, survival status, and 
the relative score of 14 DL features (Fig. 5F). Based on 
median of risk score, patients in TCGA-UVM cohort 
were split into two groups: high-risk (n = 40) and low-
risk (n = 40). K-M curves uncovered that patients in 

Fig. 4 Unsupervised clustering of deep learning features in TCGA‑UVM cohort. A Comprehensive heatmap with unsupervised clustering showed 
distinctive characteristics of deep learning features and clinical characteristics. B Kaplan–Meier curve of survival probability between Cluster1 and 
Cluster2 subtype. C Boxplot of the 14 deep learning features between alive and dead status. D Heatmap of 50 cancer Hallmark pathways between 
Cluster1 and Cluster2 subtypes. E Comprehensive OncoPrint plots of mutated characteristics in Cluster1 and Cluster2 subtypes. F Boxplot of TMB 
between Cluster1 and Cluster2 subtypes. G Boxplot of MSI between Cluster1 and Cluster2 subtypes. H The distributions of mutational signatures in 
Cluster1 and Cluster2 subtypes. I Forest plots of the top mutated genes between Cluster1 and Cluster2 subtypes
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high-risk have a poor survival with log-rank p < 0.0001 
(Fig. 5G). The time-dependent ROC (td-ROC) showed 
that 1, 3 and 5  years of AUCs were 0.713, 0.860 and 
0.953 (Fig.  5I). Furthermore, patients in HX cohort 
were accordingly classified into two groups: high-
risk (n = 33) and low-risk (n = 34) and survival curves 
suggested that high-risk have a poor prognosis with 
log-rank p = 0.00062 (Fig.  5H). The td-ROC of 1, 3 
and 5  years were 0.814, 0.829 and 0.846, respectively 
(Fig.  5J). To discovery the histopathologic gene-signa-
ture in UM, the samples of TCGA-UVM cohort (n = 80) 
were used as a training set, meanwhile GSE22138 
(n = 63), GSE27831 (n = 29), GSE84976 (n = 28) and 
E-MTAB-4097 (n = 68) were treated as outside valida-
tion sets. Firstly, patients in the TCGA-UVM cohort, 
were classified into two subtypes: Cluster1 (n = 38) and 
Cluster2 (n = 42) based on histopathologic DL-signa-
ture; The differentially expressed analysis explored 142 
DEGs in TCGA-UVM cohort (Table S4). The KEGG 
enrichment of DEGs was illustrated in Fig.  6A. After-
wards, univariate cox analysis revealed that 35 genes 
in DEGs were substantially linked with overall sur-
vival time in TCGA-UVM cohort (Table  3). Combin-
ing Lasso-penalized selection and AUC estimation, we 
found 12 histopathologic-related genes were greater 
than 200 (Fig.  6B). When the histopathologic-related 

signature contained 3 genes, the AUC of signature 
(TRIB3, TMEM101, and SLC12A9) was achieved the 
max value = 0.845 (Fig.  6C, D). Eventually, three genes 
were then utilized to build a gene-signature. The dis-
tribution of risk scores for patients in TCGA-UVM 
cohort, survival status, and genes expression level 
were visualized in a risk-heatmap (Fig.  6E). Based on 
median of risk score, patients in TCGA-UVM cohort 
were split into two groups: high-risk (n = 40) and low-
risk (n = 40). K-M curves of high- and low-risk group 
revealed that high-risk group have a poor survival 
with log-rank p-value < 0.0001 (Fig.  6F). The td-ROC 
showed that 1, 3 and 5 years of AUCs were 0.745, 0.865 
and 0.845 (Fig.  6G). In the validation sets (GSE22138, 
GSE27831, GSE84976 and E-MTAB-4097), these UM 
patients accordingly classified into low- and high-risk 
categories according to median cutoff. We discov-
ered that UM patients in the low-risk group had a sig-
nificantly longer survival probability than those in the 
high-risk group no matter in GSE22138 (Figure S1A; 
log-rank p-value < 0.0001), GSE27831 (Figure S1C; 
log-rank p-value = 0.0078), GSE84976 (Figure S1E log-
rank p-value = 0.011), and E-MTAB-4097 (Figure S1G; 
log-rank p-value = 0.048). The AUC values of gene-
signature were 0.600, 0.764, and 0.718, respectively, 
at 1, 3, and 5  years of survival time in the GSE22138 

Table 2 Clinical features of subtypes in TCGA_UVM cohort. IQR means interquartile range

level Cluster1 Cluster2 p test

n 38 42

futime (median [IQR]) 814.50 [458.75, 1161.25] 759.50 [433.50, 1204.25] 9.96E‑01 wilcox Test

fustat (median [IQR]) 0.00 [0.00, 1.00] 0.00 [0.00, 0.00] 5.05E‑04 wilcox Test

age (median [IQR]) 60.00 [53.00, 71.75] 63.50 [51.00, 75.00] 8.25E‑01 wilcox Test

gender (%) female 13 (34.2) 22 (52.4) 1.58E‑01 Chisq Test

male 25 (65.8) 20 (47.6)

stage (%) Stage II 13 (34.2) 23 (54.8) 1.75E‑01 Chisq Test

Stage III 23 (60.5) 17 (40.5)

Stage IV 2 (5.3) 2 (4.8)

histological_type (%) epithelioid 10 (26.3) 3 (7.1) 5.60E‑03 Chisq Test

mixed 20 (52.6) 17 (40.5)

spindle 8 (21.1) 22 (52.4)

chromosome.3.status (%) disomy 14 (36.8) 24 (57.1) 1.12E‑01 Chisq Test

monosomy 24 (63.2) 18 (42.9)

MetStatus (%) Metastatic 21 (55.3) 5 (11.9) 9.79E‑05 Chisq Test

Non‑metastatic 17 (44.7) 37 (88.1)

vital_status (%) alive 20 (52.6) 37 (88.1) 1.14E‑03 Chisq Test

dead 18 (47.4) 5 (11.9)

SCNA_Cluster (%) A 4 (10.5) 11 (26.2) 7.66E‑02 Chisq Test

B 10 (26.3) 13 (31.0)

C 10 (26.3) 12 (28.6)

D 14 (36.8) 6 (14.3)
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cohort (Figure S1B). In the GSE27831 cohort, the AUC 
values of gene-signature were 0.601, 0.732, and 0.565 
at 1, 3 and 5  years respectively (Figure S1D). Moreo-
ver, the AUC values of gene-signature in the GSE84976 
cohort were 0.717, 0.822, and 0.799, respectively at 
1, 3 and 5  years (Figure S1F). In the E-MTAB-4097 
cohort, the AUC values were 0.938, 0.706 and 0.663 at 
1, 3 and 5  years respectively (Figure S1H). Ultimately, 
a meta-analysis was conducted to evaluate the use of 
risk scores in prognostic prediction. These four cohorts 
were included in a meta-analysis, which revealed that 
histopathologic-related gene signature was a risk factor 
influencing UM survival, with HR = 5.31 (95% CI:1.82 
to 8.81) (Fig. 6H). To validate the results at the protein 

level, we performed immunohistochemistry of TRIB3 
and SLC12A9 (risk genes) in metastatic and primary 
melanoma tissues. Compared to primary samples, the 
proteins of TRIB3 and SLC12A9 were highly expressed 
in metastatic melanoma (Fig. 7).

Nomogram building and estimating
To provide a comprehensive and accurate approach for 
prognosis prediction, a nomogram was created using 
histopathologic DL-signature, gene-signature and clini-
cal variables from patients in the TCGA-UVM cohort. To 
begin, we applied univariate and multivariate Cox analy-
ses to contrast the prognostic performance of DL-sig-
nature, gene-signature, and other clinical variables. We 

Fig. 5 Subtype‑specific immunophenotype and therapeutic prediction. A Comprehensive heatmap of immune microenvironment signatures, 
immune‑checkpoint genes, and 22 types of infiltrated immune cells between Cluster1 and Cluster2 subtypes. B Heatmap of Cluster1 and Cluster2 
subtypes for response of anti‑CTLA‑4 and anti‑PD‑1 in Chen et al. study. The results manifested that Cluster1 subtype could be more sensitive to the 
PD‑1 inhibitor. C Heatmap of Cluster1 and Cluster2 subtypes for response of PD‑1 in Prat A et al. study. The results indicated that Cluster1 subtype 
could have more chance to achieve complete response for anti‑PD‑1 therapy. D Heatmap of Cluster1 and Cluster2 subtypes for response of PD‑1 in 
Hugo et al. study. The results indicated that Cluster1 subtype is more promising to achieve complete response for anti‑PD‑1 therapy. E Significant 
drug‑disease scores for UM patients in the Connectivity Map. The top five potential drugs are labeled. F The risk heatmap of deep learning (DL) 
signature in TCGA‑UVM cohort. G Kaplan–Meier curve of survival probability between high‑ and low‑score of DL‑signature in TCGA‑UVM cohort. 
H Kaplan–Meier curve of survival probability between high‑ and low‑score of DL‑signature in HX cohort. I Time independent ROC curves and 
corresponding AUC values for DL‑signature in TCGA‑UVM cohort. J Time independent ROC curves and corresponding AUC values for DL‑signature 
in HX cohort
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discovered that age, tumor stage, histology type, chromo-
some 3 status, metastasis status, SCNA cluster, DL-signa-
ture, and gene-signature were all correlated significantly 
with overall survival of UM in univariate regressions 
(Fig. 8A), while only age, tumor stage, and DL-signature 
were significantly associated with overall survival of UM 
in multivariate regressions (Fig. 8B). Besides, to compare 
the prognostic ability of the DL-signature, and gene-sig-
nature with clinical variables, time-dependent C-index 
curves uncovered that the DL-signature was similar to 
the gene-signature and obviously higher than other clini-
cal variables such as tumor stage and chromosome 3 sta-
tus (Fig. 8C). Thus, the DL-signature, gene-signature, age, 
tumor stage and metastasis status (p-value >  = 0.1 in mul-
tivariate regressions) were integrally merged into a nom-
ogram model which can forecast the possibility of overall 
survival at three and five years (Fig. 8D). The calibration 

curve of the nomogram at 3- and 5-year manifested a 
better consistency between the prediction and actual 
observations (Fig. 8E). The td-ROC curve to estimate the 
accuracy of the nomogram model and found that the 1-, 
3-, and 5-year of AUCs had a higher accuracy (> 0.80) 
(Fig.  8F). In the decision curve, we observed that our 
nomogram model can achieve higher net benefits than 
DL-signature, and gene-signature (Fig.  8G). Besides, we 
conducted a restricted mean survival (RMS) analysis to 
assess the prognostic value of DL-signature, gene-signa-
ture, and nomogram model. The RMS curve uncovered 
that the nomogram had a larger slope than the DL-sig-
nature (Fig. 8H), and gene-signature (Fig. 8I), which indi-
cated a superior performance of the nomogram model 
for survival prediction. However, there is no significant 
difference between DL-signature and gene-signature in 
RMS curve estimation (Fig. 8J).

Fig. 6 Discovery and validation of histopathologic gene‑signature. A The KEGG enrichment of up‑ and down‑regulated differentially expressed 
genes (DEGs). B The frequent distribution of histopathologic‑related genes in 1000 Lasso‑penalized selection and 12 genes were greater than 200 
times. C AUC values for different histopathologic‑related genes combination. When the combination is three, the AUC reaches the highest value 
(0.845). D The ROC curve for three gene combination. E The risk heatmap of UM patients in TCGA‑UVM cohort. F Kaplan–Meier (K‑M) curve of 
survival probability between high‑ and low‑risk group in TCGA‑UVM cohort. G Time dependent ROC (td‑ROC) curves and corresponding AUC values 
in TCGA‑UVM cohort. H Forest plot for meta‑analysis of multiple UVM cohorts
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Discussion
H&E-stained histopathological images can give valuable 
information for clinical decision-making in a wide range 
of malignancies [30]. However, due to the requirement 
of experience of pathologists, immunohistochemical or 
extra genetic testing restricted its availability to the gen-
eral public [31]. To the best of our knowledge, our work 
is the first time to show that a DL model can be used to 
predict the vital status of UM patients. In this work, the 
results show that our developed DL model can achieve a 
high accuracy of 90% for patches and WSIs prediction. It 

is widely available in clinical practice, allowing any patient 
with a pathological diagnosis to obtain a prognosis esti-
mation. Besides, we also investigated the interpretability 
of the model in terms of genome and transcriptome con-
nection, providing a bioinformatic interpretation for our 
model.

In principle, classification validity is beneficial in pre-
dicting the clinical importance of genotype in terms of 
therapy responsiveness. As a consequence, our DL fea-
tures classified UM patients into subtypes (Cluster1/
Cluster2) with distinct clinical outcomes, tumor muta-
tion, immune microenvironment, and molecular path-
ways. Compared to Cluster1, UM patients in Cluster2 
have a good prognosis. Regarding tumor mutation, we 
discovered that BAP1 was more frequently mutated in 
the Cluster1 subtype, which was consistent with prior 
evidence suggesting BAP1 mutations enhance the pos-
sibility of UM patients developing metastases [32]. Fur-
thermore, mutations in EIF1AX and SF3B1 were more 
common in the Cluster2 subtype, which has been shown 
to have protective roles in the prognosis of UVM patients 
[33, 34]. In molecular pathways, we observed that 10 can-
cer Hallmark pathways including glycolysis, hypoxia, IL2-
STAT5-signaling, ILl6-JAK-STAT5 signaling, MTORC1 
signaling, notch signaling, peroxisome, reactive oxygen 
species pathway, spermatogenesis, and unfolded protein 
response were actively enriched in Cluster1 subtype. 
More intriguingly, these pathways are reported to be 
associated with malignant transformation [35–37]. For 
example, the previous findings in melanoma revealed 
that unfolded protein response is positively linked with 
tumor development, size, and patient prognosis [38, 
39]. Moreover, we noticed that a high infiltration of the 
immune microenvironment existed in the Cluster1 sub-
type, as well as closely associated immune-checkpoint 
molecular such as PD-1, CTLA-4, LAG3, and PDCD1. 
Astonishingly, growing evidence shows that increased 
lymphocytic immune cell infiltration, such as CD8 + T 
and CD4 + T cells, are poor predictors of UM patient 
prognosis [40–42]. Taking all findings into account, it’s 
clear why DL features classified as Cluster1 subtype have 
a poorer prognosis than the Cluster2 subtype.

In addition, we discovered that the Cluster1 subtype 
has a higher expression level of immune-checkpoint 
molecular and is more likely to react to immunotherapy. 
Compared to anti-CTLA-4 therapy, UM patients in the 
Cluster1 subtype were more sensitive to anti-PD-1 treat-
ment and more likely to achieve a complete response. 
In fact, just a small proportion of UM patients in clini-
cal studies are responding to immunotherapies. There-
fore, exploration of suitable drugs for UM therapy is thus 
required. Via Connectivity Map analysis, we found that 
five potential drugs contained 4.5. dianilinophthalimide, 

Table 3 Univariate cox analysis of 35 prognostic differentially 
expressed genes (DEGs) in TCGA‑UVM cohort

features univ_beta univ_HR univ_95% CI for HR univ_p.value

SYBU ‑0.37195 0.689392 0.506205–0.93887 0.018263

CYB5B 0.15665 1.16959 1.02022–1.34082 0.024629

UBE2Q1 0.112354 1.11891 1.00495–1.24579 0.040357

TOMM5 0.342533 1.40851 1.05422–1.88187 0.020496

PCBP2 ‑0.04234 0.958543 0.924196–0.994167 0.022957

C2orf72 ‑0.5483 0.577931 0.353942–0.943669 0.028399

NETO2 0.287774 1.33346 1.02362–1.73707 0.032923

DNAJB1 0.043162 1.04411 1.00245–1.08749 0.03773

DNAJC15 0.339647 1.40445 1.00364–1.96532 0.04757

CDK15 ‑1.20182 0.300646 0.096355–0.938072 0.038445

TUBB6 0.084527 1.0882 1.01949–1.16154 0.011083

RAN 0.026679 1.02704 1.00067–1.0541 0.04438

CRYAB 0.007802 1.00783 1.00176–1.01394 0.011358

TXNL4B ‑0.37393 0.688024 0.47465–0.997317 0.048365

CACYBP 0.141074 1.15151 1.03932–1.27581 0.006986

CAPN2 0.071074 1.07366 1.00995–1.14139 0.022773

DEDD 0.202697 1.2247 1.01305–1.48057 0.036265

ZNF185 ‑0.46363 0.628998 0.464512–0.851729 0.002721

ANXA2 0.018306 1.01847 1.00856–1.02848 0.000243

VMAC ‑0.73929 0.477454 0.290369–0.785077 0.003573

NOXA1 ‑0.36713 0.692717 0.535862–0.895486 0.005068

SLC12A9 0.568027 1.76478 1.37961–2.25748 6.14E‑06

HDAC10 0.47998 1.61604 1.16999–2.23214 0.003583

TRIB3 0.110884 1.11727 1.03513–1.20592 0.004423

PCED1A ‑0.11676 0.8898 0.806807–0.981329 0.019427

NUDT22 0.199332 1.22059 1.09065–1.36601 0.000519

ADAMTS2 0.18112 1.19856 1.08534–1.32359 0.000347

COX6A2 ‑0.07771 0.925233 0.870973–0.982872 0.011727

STK10 0.065302 1.06748 1.02017–1.11699 0.004753

ABHD12 0.028458 1.02887 1.00135–1.05714 0.039609

SH3TC1 0.350509 1.41979 1.06157–1.89889 0.018141

MRM1 0.149227 1.16094 1.05667–1.27549 0.001883

HPSE2 ‑0.98266 0.374316 0.162647–0.861452 0.020852

TMEM101 ‑0.05321 0.948186 0.916737–0.980713 0.00199

MED22 ‑0.51298 0.598711 0.437944–0.818494 0.001303
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Fig. 7 Immunohistochemical images and the box plots of the corresponding Immunohistochemical scores. (** represents p < 0.01, *** represents 
p < 0.001). The immunohistochemical scoring criteria considered staining intensity and the ratio of positive cells (Staining intensity: 0 for no, 1 for 
low, 2 for moderate, and 3 for strong. The ratio of positive cell s: < 25% is 1, 25%‑50% is 2, 51%‑75% is 3 and > 75% is 4)
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STOCK1N.35874, arachidonyltrifluoromethane, TTNPB, 
and W.13 were promising to treat UM patients. 4.5.diani-
linophthalimide is a selective inhibitor of the epider-
mal growth factor receptor signal transduction pathway 
which is essential for the growth and metastasis of vari-
ous cancer cells [43–45]. The cytosolic phospholipase A2 
inhibitor (arachidonyltrifluoromethane) can hinder many 
critical pathways involved in the development of recur-
rent resistant cancer [46]. The pharmacological mech-
anisms of these drugs in UM patients can be used as a 
direction for future research.

It would be a ground-breaking way to characterize gene 
expression patterns for DL feature-related phenotypes to 
create patient-specific personalized treatments. We next 
investigated the DEGs within these subtypes and discov-
ered that these histopathological-related genes were posi-
tively linked with genetic information processing, cellular 

processes, and metabolism. Based on these DEGs, we 
established a prognostic gene-signature in the TCGA-
UVM cohort and verified its prognostic values in sev-
eral independent datasets. The gene-signature contained 
three genes, including TRIB3, TMEM101, and SLC12A9, 
of which some have been reported to be correlated to 
melanoma and other tumors. For example, via suppress-
ing autophagy and ubiquitin–proteasome degradation 
processes, TRIB3 can promote melanoma progression 
[47]. The transmembrane protein TMEM101 has been 
demonstrated to stimulate the NF-kappa-beta signaling 
pathways. Medha et al. reported that methylation of the 
TMEM101 promoter works as a potential predictive bio-
marker for breast cancer [48]. As a result, it is plausible 
to anticipate that our discovered gene-signature can be 
used as a predictive biomarker in a future clinical study. 
When compared to conventional clinical characteristics, 

Fig. 8 Construction of nomogram. A Forest plots of univariate Cox regression for histopathologic DL‑signature, gene‑signature, and clinical 
variables. B Forest plots of multivariate Cox regression for histopathologic DL‑signature, gene‑signature, and clinical variables. C Time dependent 
C‑index of DL‑signature, gene‑signature, and clinical variables (tumor stage, histological type, metastasis status, chromosome 3 status and SCNA_
Cluster). D Nomogram included DL‑signature, gene‑signature, age, tumor stage and metastasis status which predicts the 3‑, and 5‑year of overall 
survival time for patients TCGA‑UVM cohort. E Calibration curves of the nomogram for the estimation of 3‑, and 5‑year of overall survival rates. 
F Time dependent ROC of nomogram. G The decision curves of nomogram, DL‑signature, and gene‑signature. H RMS curves for DL‑signature and 
nomogram. I RMS curves for gene‑signature and nomogram. J RMS curves for DL‑signature and gene‑signature. Each point represents the RMS 
time of corresponding DL‑signature, gene‑signature and nomogram scores
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our constructed DL-signature and gene-signature out-
performed the clinical features (eg. Tumor stage, histol-
ogy type, chromosome 3 status, and SCNA_cluster). 
Importantly, univariate and multivariate Cox regression 
demonstrated that our DL-signature may be used as an 
independent prognostic predictor in UM to offer a fairly 
accurate prediction of overall survival. Finally, a systemic 
nomogram combining DL-signature and gene-signature 
was proven to possess high predictive power and guide 
clinicians on optimal treatment approaches to increase 
the practical application value of the histopathological-
related signature.

Conclusions
Overall, we created a deep learning model for vital sta-
tus prediction based on histopathological images. Using 
these pictures, it is now feasible to assess the prognosis 
of UM patients more than many previous works. Accord-
ing to histopathological DL features, we found out two 
subgroups that may be in favor of immunotherapy and 
chemotherapy. Furthermore, we developed a systemic 
nomogram that combines DL-signature and gene-signa-
ture to give a more straightforward and reliable prognosis 
for UM patients in treatment and management.
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