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Abstract 

Background: Cellular senescence is a tumor suppressive response in which the cell cycle is in a state of permanent 
arrest and can inhibit tumor cell proliferation. In recent years, induction of cellular senescence has been shown to be 
important for antitumor therapy, and the link between cellular senescence and clinical prognosis and immunother-
apy of hepatocellular carcinoma is still unknown.

Methods: We performed enrichment analysis of genes in three cellular senescence gene sets, screened for gene sets 
significantly enriched in hepatocellular carcinoma and extracted genes from them. Signature were constructed using 
senescence-related genes, and their expression was verified at the protein and RNA levels. Survival, clinical staging 
and grading, immune infiltration, immunotherapy, and drug sensitivity were also analyzed between risk groups.

Results: The q-PCR and immunohistochemistry results revealed significant differences in the expression of the signa-
ture genes between normal and tumor tissues. Significant differences in clinicopathological features, prognosis and 
immune infiltration were observed between risk groups. In the low-risk group, better OS and lower TMB scores were 
demonstrated, while the high-risk group had higher immune checkpoint expression, as well as lower risk of immune 
escape. In addition, we found that the High-risk group was more sensitive to sorafenib.

Conclusion: In summary, the signature constructed using aging-related genes can reliably predict patient prognosis 
and immunotherapy efficacy, providing a new idea for immune system therapy of hepatocellular carcinoma.
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Introduction
Hepatocellular carcinoma (HCC) is currently the sixth 
most common tumor worldwide, accounting for approxi-
mately 5% of all cancers [1]. It has the fourth highest 
mortality rate, with approximately 745,000 deaths from 

hepatocellular carcinoma each year [2]. There is no good 
treatment for HCC, and although its treatment options 
include: surgery, interventional and molecular targeted 
therapy, the mortality rate of HCC has not been effec-
tively controlled [3].

Cellular senescence is a marker of biological and 
temporal aging, and a potential indicator of pathologi-
cal tissue status [4]. Cellular senescence refers to the 
state in which cells reach cycle arrest and is also aimed 
at cell clearance or cancer prevention. In contrast to 
apoptosis, senescence-defined living cells are able to 
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communicate with neighboring cells and the immune 
system by secreting powerful extracellular factors [5, 6]. 
Senescent cells are involved in immune system clear-
ance and tissue repair, and senescence appears to be 
more powerful compared to apoptosis, which has only 
a transient signaling capacity [7].

Cellular senescence is considered to be the response 
of proliferating somatic cells to exogenous and endog-
enous stress and injury. It is characterized by a per-
manent blockage of the cell cycle [8]. Cellular aging is 
inevitable over time and is accompanied by the deg-
radation of many physiological functions, making 
it a detrimental factor in many diseases of the body 
[9]. Cellular senescence has now been found to be an 
important way to control tumor progression and inhibit 
the proliferation of cancer cells by inducing senescence 
[7, 10]. Many therapeutic agents induce cellular senes-
cence, called therapeutically induced senescence (TIS), 
which can effectively inhibit tumor development [11, 
12]. However, it has also been found that if senescent 
cells persist, they may also contribute to the develop-
ment of tumors [13, 14]. Therefore, it is crucial how 
to effectively use senescence-inducing drugs to inhibit 
tumor development. With the discovery of senescence-
associated secretory phenotypes (SASP), the long-term 
and long-lasting effects of senescent cells on the bal-
ance of the tissue internal environment are also gaining 
attention [15]. In recent years, studies on senescence-
associated genes as diagnostic and prognostic markers 
for tumors have begun to emerge, but no studies have 
been reported on the use of senescence-associated 
genes to predict prognosis and immunotherapy for 
HCC.

Therefore, in this study, we constructed a signature 
for predicting HCC prognosis by targeting cellular 
senescence-related genes, providing new insights into 
the prognosis and immunotherapeutic targets of HCC.

Materials and Methods
Data Processing
First, we entered the Gene Set Enrichment Analysis 
(GSEA) database, then entered the MsigDB section 
and click Search, and search for cellular senescence 
gene sets. We screened three gene sets: “GOBP_CELL_
AGING”, “GOBP_REGULATION_OF_CELL_AGING” 
and “REACTOME_CELLULAR_SENESCENCE”.

342 HCC patients (survival time > 31  days) were 
obtained from the TCGA database. 231 HCC patients 
were obtained from the ICGC database (ICGC-LIRI-
JP) (metastatic hepatocellular carcinoma and patients 
with missing data were excluded). Variance analy-
sis was performed using the "limma" R package, with 

FDR values set to less than 0.05 and logFCfilter set to 
greater than 0.5.

Screening of Senescence‑Related Genes
Screening of senescence-related genes using Weighted 
Gene Co-expression Network Analysis (WGCNA) algo-
rithm. The minimum number of module genes was set 
to 30, and the gene hierarchy clustering dendrogram was 
pruned using the shear dynamic function to generate co-
expression modules. The differences in module signature 
genes (ME) were calculated using the module signature 
gene function, and the modules with the highest correla-
tion coefficients were extracted for further study.

Development and Validation of Senescence‑Related Genes
The differential expressed genes (DEGs), prognostic 
genes and the highest correlated modular genes from 
WGCNA in TCGA were taken as the intersection set, 
and the obtained genes were used for signature con-
struction. The 342 HCC patients were divided into a 
training set (set1) and a Test set (set2) (1:1 randomized 
assignment), with the overall TCGA dataset as the vali-
dation set (set3) and external validation using the ICGC 
dataset (set4). Risk signature were constructed from 
the training set (Lasso and COX regression analysis)
(RiskScore = expression level of mRNA ∗ The regression 
coefficient).

The validation groups (set 2, 3 and 4) were divided into 
high and low risk groups, followed by survival analysis 
and plotting of ROC curves (1, 2, and 3 years). The age, 
sex, Stage staging, A nomogram based on senescence-
related genetic features was constructed using "rms" 
and "regplot" (R package) to combine rank staging and 
risk scores. The accuracy and reliability of the nomo-
gram is judged from the calibration curve. Subsequently, 

Table 1 Primer sequences used for RT-qPCR

Gene Sequence (5’‑3’)

GAPDH F: GGA GCG AGA TCC CTC CAA AAT 

R: GCT GTT GTC ATA CTT CTC ATGG 

CBX2 F: GAC TTA GAT GCT AAG AGG GGTC 

R: CTT CTT CCG GAT GGG ATC CTTC 

CDKN2B F: CAG CGA TGA GGG TCT GGC 

R: CCT CCC GAA ACG GTT GAC TC

ETS2 F: CTC TGG GCC ACC AAT GAG TT

R: TCA CCC ACA AAG TCA GGT GC

HMGA1 F: CAG CGA AGT GCC AAC ACC TA

R: GTC TGC CCC TTG GTT TCC TT

UBE2S F: GAT CTT CCA CCC GAA CGT GG

R: CTC GTT GAG TGC AGA CTC GG
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the signature was further validated in three validation 
cohorts (set2, set3 and set4). In addition, a comparative 
analysis with other HCC signatures was performed to 
further determine the accuracy of our signature [16–19].

Expression Validation of Senescence‑Related Signature 
Genes
After obtaining informed consent from patients, we col-
lected 30 pairs of HCC tissues and paraneoplastic tis-
sues (from the Second Affiliated Hospital of Nanchang 
University), while one normal hepatocyte line (7702) 
and four HCC cell lines (97H, LM3, HepG2 and 7721) 
were cultured (cells were from the Shanghai Institute of 
Cell Biology). All cell lines were cultured in high glucose 
DMEM (Solarbio, Beijing, China) supplemented with 
10% fetal bovine serum (bio-Industries, Beit-Haemek, 
Israel), 100 µg/ml streptomycin and 100 U/mL penicillin 
at 37 °C, and in a 5% CO2 humidified incubator.

RNA Levels to Detect Expression Differences
Tissues and cells were extracted for total RNA. total 
RNA was extracted according to the instructions of Tri-
zol kit (Invitrogen). cDNA was synthesized using reverse 
transcription kit (Takara). qRT-PCR was used to detect 
mRNA expression levels of the characterized genes. The 
primer sequences of the signature genes are shown in 
Table 1.

Western Blot was Used to Detect Protein Expression 
Differences
HCC cell lines and tissue samples were extracted with 
RIPA lysate for total protein, and protein concentrations 
were determined by the BCA method. Each group of pro-
teins was sampled and subjected to SDS-PAGE electro-
phoresis, electrotransferred to PVDF membrane, closed 
with 5% skimmed milk for 2  h, incubated with primary 

antibody overnight at 4 °C, washed 3 times with TBST for 
10  min each time, and then the corresponding second-
ary antibody was added and incubated for 2  h at room 
temperature, washed 3 times with TBST for 10 min each 
time for fluorescent color development.

Immunohistochemistry (IHC) Experiments was Used to Detect 
Protein Expression Differences
HCC tissues were paraffin-embedded, sectioned, 
dewaxed and hydrated, incubated with anti-trait gene 
antibodies overnight at room temperature, then labeled 
with secondary antibodies for 30  min, stained and 
photographed.

The specific primary antibodies were purchased from 
the following resource:

GAPDH(Abmart, M20006, WB(1:5000)), CBX2(Abmart, 
PH3521, WB(1:1000), IHC(1:100)), CDKN2B(Affbiotech, 
AF0230, WB(1:1000), IHC(1:100)), ETS2(Abmart, MG225391, 
WB(1:1000), IHC(1:150)), HMGA1(ABclonal, A4343, 
WB(1:1000), IHC(1:100)), UBE2S(Abmart, PK66136, 
WB(1:1000), IHC(1:100)).

Immune Cell Infiltration Analysis
The content of 22 human immune cell subpopulations 
in TCGA-LIHC was assessed using the CIBERSORT 
algorithm, followed by visual analysis of differences in 
immune cells between risk groups.

Analysis of Tumor Microenvironment
In order to further verify the relationship between the 
constructed signature and tumor microenvironment 
and immunotherapy, the "ggplot" R package was used to 
analyze the degree of Tumor mutational burden (TMB) 
and Microsatellite Instability (MSI) among different 
risk groups. Then, the samples were divided into high 
TMB(H-TMB) and low TMB(L-TMB) according to the 

Fig. 1 Gene Set Enrichment Analysis (GSEA). Three senescence-related gene sets were significantly activated in HCC tissues compared with normal 
tissues. The significance criteria were nominal P-value < 0.05 and FDR q-value < 0.25
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median value of TMB to compare whether there was dif-
ference in survival between the two groups. At the same 
time, in order to further reflect the survival difference 
between high and low risk groups, we also analyzed the 
survival difference between high TMB and low TMB 
among different risk groups.

Immunotherapy and Drug Sensitivity Analysis
The immune escape relationship was compared between 
the risk groups by the TIDE algorithm. In addition, the 
difference in IC50 of sorafenib between the two groups 
and the correlation with the risk score were compared 
using the "pRRophetic" (R package).

Statistical Analysis
The R language (version 4.1.2) and GraphPad Prism 8.0 
were used for statistical analysis. the Chi-square test 
was used for correlation analysis of categorical data, P 
value < 0.05 indicates statistical significance.

Results
The Senescence Process of Cells was Activated Significantly 
in Hepatocellular Carcinoma
Based on TCGA dataset, we performed enrichment 
analysis of "GOBP_CELL_AGING", "GOBP_REGULA-
TION_OF_CELL_AGING" and "REACTOME_CELLU-
LAR_SENESCENCE" and found that senescence-related 

Fig. 2 Identification of differentially expressed genes (DEGs) in HCC. A The heatmap. B The volcano map. C Gene ontology (GO) analysis of DEGs. D 
Kyoto Encylopedia of Genes and Genomes (KEGG) analysis of DEGs
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genomes were significantly activated in HCC (Table S1) 
(Fig. 1A-C).

Differential Expression and Prognostic 
of Senescence‑Related Genes in TCGA‑LIHC
After the three gene sets were opened in text form, the 
genes in the gene set were extracted, and we got 299 
genes after removing duplicate genes. Then, we extracted 
these genes from TCGA-LIHC for differential expression 
analysis, and obtained 126 genes with significant differ-
ences (52 down-regulated and 74 up-regulated) (Fig. 2A, 
B) (Table S2). We subjected the differential genes to GO 
and KEGG enrichment analysis, and the results of GO 

enrichment analysis showed that they were mainly asso-
ciated with cell aging, aging, cellular senescence, nucleo-
some and protein-DNA complex. KEGG enrichment 
analysis showed that it was mainly related to Neutrophil 
extracellular trap formation, Systemic lupus erythemato-
sus, Alcoholism, Cellular senescence and Viral carcino-
genesis (Fig. 2C, D).

In addition, after screening the information of TCGA-
LIHC samples with survival information and excluding 
patients with survival time < 31  days, 344 HCC patients 
were finally screened. 109 genes significantly associated 
with prognosis were finally screened from 299 senes-
cence-related genes (Table S3).

Fig. 3 LASSO and cox regression analysis to identify signature genes in the training set. A We intersected the differentially expressed genes (DEGs), 
prognostic genes and modular genes obtained from WGCNA analysis and obtained 33 shared genes. B In the training set, we performed Univariate 
cox regression analysis on these 33 shared genes to screen for prognosis-related genes. C Cross-validation of the LASSO regression. D Coefficient 
value of prognostic genes
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WGCNA
Using the WGCNA algorithm, these genes were assigned 
to different modules by clustering dendrograms, and 
finally, we obtained three modules, among which the tur-
quoise module consisting of 86 senescence genes showed 
the highest correlation and significance, therefore, we 
selected the senescence genes in the turquoise module 
for subsequent analysis (Fig. S1).

Construction of Senescence‑Related Gene Signature
First, we took the intersection of differential expressed 
genes (DEGs), prognostic genes and turquoise module 
genes and obtained 33 intersecting genes. Using these 
33 genes to construct a signature of senescence-related 
genes. First, 342 samples were randomly divided 1:1 into 
training set and Test set. These 33 intersecting genes 
were analyzed by univariate Cox regression to derive 
genes with prognostic features in the training set for 

the next step of analysis. Then, the signature genes and 
their regression coefficients were obtained by Lasso and 
multivariate cox regression analysis (Fig.  3A-D). Finally, 
we obtained 5 signature genes: CBX2, CDKN2B, ETS2, 
HMGA1 and UBE2S. Therefore, we created a risk score 
system based on the signature genes and regression coef-
ficients to calculate the risk score for each sample. In 
each data set, the sample was divided into high-risk and 
low-risk groups based on the median value of the risk 
scores. The risk score is calculated as follows:

The expression of signature genes was demonstrated 
with a heat map (set 1) (Fig. 4A), and by analysis it was 
found that patients in the high-risk group had a lower 
survival rate (p < 0.05) (Fig.  4B). As the risk score gets 

RiskScore = (CBX2 ∗ 0.385) + (CDKN2B ∗ 0.417)

+ (ETS2 ∗ −0.322) + (HMGA1 ∗ 0.197)

+ (UBE2S ∗ 0.301)

Fig. 4 Prognostic signature based on 5 senescence-related genes. A The expression of 5 senescence-related genes in the TCGA train set. B Survival 
analysis between the high-risk and low-risk groups in the TCGA train set. C Distribution of risk scores and survival outcomes. D Receiver operating 
characteristic curve (ROC) of risk score in the TCGA train set
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higher, the survival time gets shorter and the number 
of deaths gets higher (Fig.  4C). The AUC values at 1, 2 
and 3  years were 0.867, 0.755 and 0.711, respectively 
(Fig. 4D).

Expression Validation of Signature Genes
First, the expression levels of the signature genes in cells 
(normal liver cells vs hepatocellular carcinoma cells) and 
tissues (hepatocellular carcinoma tissues vs paraneoplas-
tic tissues) were verified by q-PCR assay (Fig. 5A-J).

Then, we examined the differences in expression of the sig-
nature genes in eight pairs of hepatocellular carcinoma and 
paraneoplastic tissues by Western blot (Fig. 6A). At the cel-
lular level, we compared the protein expression differences 
of the signature genes between normal liver cell (7702) and 
HCC cells (LM3, 97H, HepG2, 7721 and Hu7) (Fig. 6B).

Finally, we carried out an immunohistochemical exper-
iment. We showed representative images of five genes, 
and then compared the expression differences between 
HCC tissues and paraneoplastic tissues using relative 
optical density scores (Fig. 7).

Fig. 5 Validation of differential expression of 5 signature genes in cells and tissues by q-PCR. A-E Differential mRNA expression of 5 signature genes 
in 7702, LM3, 97H, HepG2 and 7721 cells. The results showed that the expression of CBX2, CDKN2B, HMGA1 and UBE2S in HCC cells was significantly 
higher than that in normal liver cells. In contrast, the expression of ETS2 was higher in normal liver cell. F-J Differential mRNA expression of 5 
signature genes in HCC tissue and paraneoplastic tissue (30 pairs), The expression of CBX2, CDKN2B, HMGA1 and UBE2S were significantly higher in 
HCC and paraneoplastic tissues. In contrast, ETS2 was lower expressed in HCC tissues
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Fig. 6 Western Blot showed the protein expression difference of 5 signature genes in HCC tissues and cells. A Differential protein expression of 5 
signature genes in 8 pairs of HCC tissues and paraneoplastic tissues. B Differential protein expression of 5 signature genes in normal liver cell (7702) 
and HCC cells (LM3, 97H, HepG2, 7721 and Hu7)
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Molecular Interaction Networks of Signature Genes 
and Signature Validation.

We used the GeneMANIA (http:// genem ania. org/) 
online website to analyze the molecular interaction net-
work between the five signature genes and found that 
the functions of these five genes and interacting genes 
(e.g. ID1, ERF, CDK4, PIAS2, CDK6,CDKN2C, etc.) 
were mainly related to regulation of cellular senescence, 
cyclin-dependent protein serine/threonine kinase regu-
lator activity, regulation of G1/S transition of mitotic 
cell cycle, ubiquitin ligase complex, negative regula-
tion of cell cycle phase transition, protein kinase inhibi-
tor activity and nuclear ubiquitin ligase complex and 
CDKN2B seems to be enriched with even more features 
(Figure S2).

In the test group (set2), survival was worse in the high-
risk group (p < 0.05). The AUC values at 1, 2 and 3 years 
were 0.745, 0.734 and 0.719, respectively (Figure S3A-C).

In the total TCGA set (set3), to validate the extent of 
classification between risk groups, we used t-SNE and PCA 
downscaling, and we found that the samples between risk 
groups could be well differentiated between HCC patients 
(Figure S4A-B). Again, the low-risk group had better sur-
vival (p < 0.05). The AUC values at 1, 2, and 3 years were 
0.810, 0.748, and 0.719, respectively (Figure S3D-F).

The signature was next tested using ICGC data, and 
we also used t-distributed Stochastic Neighbor Embed-
ding (t-SNE) and Principal Component Analysis (PCA) 
downscaling analysis, and found that the samples 
between risk groups also distinguished HCC patients 
well (Figure S4C-D), In addition, the survival analysis 

was consistent with the results of the other validation 
sets (Figure S3G-I).

In addition, to verify the accuracy and reliability of our 
signature, our signature was compared with four signa-
tures from previous studies, and it was found that the 
consistency index (C-index) of our signature was higher. 
Meanwhile, we constructed signatures with our data 
using the signature genes of four other studies, and then 
obtained ROC curves for 1, 2, and 3  years, and found 
that the predictive power of our signature has higher 
accuracy (Figure S5).

Independent Prognostic Analysis
Both univariate and multifactorial analyses found that 
Stage staging and riskScore were significantly associated 
with patients (P < 0.05) (Fig.  8A, B). For further evalua-
tion for individual patients, we simplified the statistical 
prediction signature using Nomograms. The calibration 
chart also shows good accuracy (Fig. 8C, D).

Clinical Correlation Analysis
We first presented the signature genes with clinically rel-
evant indicators in heat map form, and found significant 
differences in T-stage, Stage staging and Grade staging 
between risk groups (P < 0.05) (Fig.  9A) (Figure S6). We 
present the clinical characteristics between risk groups 
in the form of box plots (Figure S7). Also, we further vali-
dated the reliability of the signature by analyzing the sur-
vival rates of patients at different clinical stages, which were 
low in the high-risk group in all stages and grades (p < 0.05) 
(Fig. 9B-E).

Fig. 7 Staining images of five signature genes in HCC tissues and paraneoplastic tissues. Relative optical density scores were used to compare the 
differences between the two groups. A CBX2; B CDKN2B; C ETS2; D HMGA1; E UBE2S

http://genemania.org/
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GO and KEGG Enrichment Analysis
GO enrichment analysis suggested that the high 
risk group was mainly associated with HUMORAL_
IMMUNE_RESPONSE_MEDIATED_BY_CIRCULAT-
ING_IMMUNE, PHAGOCYTOSIS_RECOGNITION 
RECOGNITION and IMMUNOGLOBULIN_COM-
PLEX. The low-risk group is mainly associated with 
ALPHA_AMINO_ACID_CATABOLIC_PROCESS, 
CELLULAR_AMINO_ACID_CATABOLIC_PROCESS 
and FATTY_ACID_BETA_OXIDATION (Fig. 10A,B).

KEGG enrichment analysis suggested that the high-risk 
group was mainly associated with CELL_CYCLE, DNA_
REPLICATION and ECM_RECEPTOR_INTERACTION. 

The low-risk group is mainly associated with COM-
PLEMENT_AND_COAGULATION_CASCADES, 
DRUG_METABOLISM_CYTOCHROME_P450 and 
FATTY_ACID_METABOLISM (Fig. 10C,D).

Immune Cell Infiltration Analysis
In the high-risk group, patients had higher levels of T-cell 
follicular helpers, T-cell regulation (Tregs), T-cell CD4 
memory activation, and macrophage M0, B-cell mem-
ory (P < 0.05). However, the level of resting T-cell CD4 
memory, monocytes, macrophage M1 and mast cells 
were lower (P < 0.05) (Table S4) (Fig.  11A). Also, Analy-
sis of immune-related functions between the risk groups 

(See figure on next page.)
Fig. 9 Relationship between risk score and clinical characteristics. A The correlations between the senescence-related genes and clinicopathologic 
characters of the high-risk group and low-risk group were shown as a heatmap. B Survival analysis between the high-risk and low-risk groups in the 
patients with Stage I-II. C Survival analysis between the high-risk and low-risk groups in the patients with Stage III-IV. D Survival analysis between the 
high-risk and low-risk groups in the patients with Grade I-II. E Survival analysis between the high-risk and low-risk groups in the patients with Grade 
III-IV. *P < 0.05, **P < 0.01, ***P < 0.001

Fig. 8 Independent prognostic analysis and Construction and validation of the Nomograms. A Univariate cox regression analysis for the TCGA 
cohort. B Multivariate cox regression analysis for the TCGA cohort. C Construction of the Nomograms. D The calibration curves displayed the 
accuracy of the nomogram in the 1-, 2- and 3 years
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Fig. 9 (See legend on previous page.)
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revealed significant differences in type II_IFN_response, 
MHC_class_I and type I_IFN_response between the two 
groups (Fig. 11B). We also show immune cells that have 
significant correlation with signature genes (Figure S8).

Tumor Microenvironment Analysis
Tumor microenvironment analysis showed significant 
differences in TMB levels between risk groups, with 
higher risk groups having higher levels of TMB expres-
sion, while higher TMB levels were associated with 
lower survival rates (P < 0.05) (Fig.  11C, D). The TMB 
levels between different risk groups affected the survival 
rate of patients (P < 0.05) (Fig. 11E). Microsatellite insta-
bility analysis showed lower MSI levels in the low-risk 
group (P < 0.05) (Fig. 11F).

Immune Checkpoint and Drug Sensitivity Analysis
Differential analysis results showed that HDAC2, PD-1, 
CTLA4, CD86, HHLA2, SOAT1, ICOS, CD40, CD27, 
CD28, IDO1, CDK1, CD276 and MMP9 were more 

expressed in the high-risk group (Fig. 12A). The results 
of correlation analysis showed significant correla-
tions between 14 immune checkpoints and risk scores 
(Fig.  12B). In addition, the high-risk group had lower 
TIDE scores, less likelihood of immune escape, and bet-
ter efficacy during immunotherapy (Fig. 12C). In recent 
years, tumor progression, metastasis, recurrence and 
tumor resistance to cytotoxic therapy play a key role, We 
analyzed the correlation between risk score and tumor 
stem cells and found that the higher the risk score, the 
higher the tumor stem cell score (P < 0.05) (Fig. 12D).

Meanwhile, In order to analyse the differences in 
immunotherapy between the high and low risk groups, 
we used the "pRRophetic" R package to predict the gene 
expression and drug sensitivity of the cell lines. The 
analysis of riskScore and drug sensitivity showed that 
the higher the risk score, the higher the sensitivity to 
sorafenib and the better the treatment outcome is likely 
to be (Fig. 12E). And the high-risk group was more sen-
sitive to sorafenib treatment (Fig. 12F).

Fig. 10 GO and KEGG enrichment analysis of senescence-related genes. A GO enrichment analysis of high-risk group. B GO enrichment analysis of 
low-risk group. C KEGG enrichment analysis of high-risk group. D KEGG enrichment analysis of low-risk group
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Discussion
In this study, we established the first signature con-
structed from cellular senescence genes in hepatocellu-
lar carcinoma, which provides promising new molecular 
markers and predictors of immunotherapy and chemo-
therapy through the study of cellular senescence and 
provides new insights for individualized treatment of 
hepatocellular carcinoma.

Senescent cells are characterized by persistent growth 
arrest and activation of damage-sensing signaling path-
ways, resulting in the expression of a large number of 
senescence-related substances [20]. However, "quies-
cence" and "terminal differentiation" are also responsible 
for cell cycle arrest, and we want to distinguish growth 
arrest from cellular senescence. The active hypophospho-
rylated RB family is also responsible for growth arrest, 

Fig. 11 Immune infiltration analysis and Analysis of the tumor mutation burden (TMB) and Microsatellite instability (MSI). A The comparison of 
CIBERSORT scores derived from 22 different immune cells. B Analysis of immune-related pathways between high-risk group and low-risk group. 
C The expression of TMB between high-risk group and low-risk group. D Survival analysis between the high-TMB and low-TMB groups. E Survival 
analysis between the risk score and TMB levels. F The expression of MSI between high-risk group and low-risk group
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Fig. 12 Evaluation of immune checkpoint profiles and immunotherapy between risk groups. A The expression of immune checkpoints between 
high-risk group and low-risk group. B Correlation analysis between immune checkpoints and risk scores. C Comparison of the scores of TIDE 
between the high and low risk group. D The relationship between risk score and RNAss. E The relationship between risk score and sorafenib 
senstivity (IC50). F Comparison of the sorafenib senstivity (IC50) between the high and low risk group



Page 15 of 16Sun et al. Biological Procedures Online           (2022) 24:24  

but they differ greatly in the timing and mechanism of 
arrest [20, 21].

Tumor suppression by cellular senescence is one of the 
most widely known cell-intrinsic mechanisms to pre-
vent tumor transformation [22]. Mice with major defects 
in apoptosis are not significantly susceptible to tumors, 
whereas even subtle disturbances in senescence mecha-
nisms significantly affect cancer susceptibility [23]. And 
mice that lose a single copy of Trp53 or p16INK4a are sus-
ceptible to tumors [24]. Therefore, it is crucial to use the 
cellular senescence process to control tumor development.

In our present study, a signature constructed from 
senescence-related genes could accurately determine the 
prognosis of patients with HCC. And our experiments 
have confirmed that these five signature genes are signifi-
cantly differentially expressed in HCC tissues and normal 
liver tissues. CDKN2B has been shown to be associated 
with the development of colorectal and gastric cancers 
[25, 26]. Recent studies on mouse intestinal stem cells 
(ISC) have shown that HMGA1 is capable of maintaining 
Wnt and other pathways and that HMGA1 overexpres-
sion promotes tumor development [27]. It has also been 
shown that HMGA1 can directly interact with PD-L1, and 
upregulation of HMGA1 by PD-L1 can activate PI3K/Akt 
and MEK/ERK pathways to promote the development of 
colon and intestinal cancers [28]. The polymorphic his-
tone CBX2 plays an important role in processes involved 
in cell proliferation and differentiation, and its targeted 
deletion leads to homogeneous heteromorphic transfor-
mation, proliferation defects and premature senescence. 
Deletion of CBX2 in mouse fibroblasts leads to large-scale 
chromatin structural abnormalities and chromosomal 
instability [29]. Moreover, knockdown of CBX2 has previ-
ously been shown to inhibit the development of HCC [30]. 
ETS2 can affect the progression of osteosarcoma and gas-
tric cancer [31, 32]. In addition, knockdown of UBE2S can 
inhibit the proliferation and invasion of HCC [33].

We showed significantly higher expression of 
the common 14 immune checkpoints and a bet-
ter response to immune checkpoint inhibitors in the 
high-risk group. Targeted therapy is now crucial in the 
treatment of HCC, and sorafenib is an effective first-
line therapy in advanced HCC [34]. The present study 
showed that senescence-related gene signatures can be 
used to predict treatment response to sorafenib. High-
risk patients may be more sensitive to sorafenib.

Conclusion
In summary, the senescence-related gene signature can 
well predict the prognosis of HCC patients, and the 
signature provides a new idea to improve the immuno-
therapy of hepatocellular carcinoma.
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