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Abstract

Over the past decade, methods for predicting three-dimensional (3-D) chromosome and genome structures have
proliferated. This has been primarily due to the development of high-throughput, next-generation chromosome
conformation capture (3C) technologies, which have provided next-generation sequencing data about
chromosome conformations in order to map the 3-D genome structure. The introduction of the Hi-C technique—a
variant of the 3C method—has allowed researchers to extract the interaction frequency (IF) for all loci of a genome
at high-throughput and at a genome-wide scale. In this review we describe, categorize, and compare the various
methods developed to map chromosome and genome structures from 3C data—particularly Hi-C data. We
summarize the improvements introduced by these methods, describe the approach used for method evaluation,
and discuss how these advancements shape the future of genome structure construction.

Keywords: Hi-C, 3-D chromosome and genome structure, Chromosome conformation capture, 3-D genome,
Contact-based modeling, Distance-based modeling, Optimization

Background
After decades of research about the organization of the
nucleus of the eukaryotic cell, there exists substantial
evidence that the genome architecture plays a key role
in nuclear functions. [1–8]. For instance, the spatial ar-
rangement and proximity of genes has been linked to
biological functions such as gene replication, regulation
and transcription. [6, 9–11].
The impact of genome architecture on nuclear pro-

cesses spans multiple hierarchical levels including the
spatial compartmentalization of the process, the
higher-order organization of chromatin and the arrange-
ment of the genome within the nucleus. Despite the dy-
namic nature of their process components, processes
such as transcription and DNA repair have been shown
to be constrained to specific spatial locations rather than
randomly dispersed throughout the nucleus. Genes tend
to be more active in sparse euchromatin than dense het-
erochromatin, purportedly due to the impact of folding

density on regulatory factor availability. The homoge-
neous topology of chromatin has potential to capture
nuclear proteins, affecting their probability of interaction
with binding sites. Small, kilo-base sized chromatin
loops can localize promoters with upstream elements
while larger mega-base sized loops can spatially segre-
gate nuclear regions imposing independence on different
processes.
Understanding the 3-D organization of the

eukaryotic genome is essential to explain the import-
ant chromosomal activities within the cell. Hence, a
fundamental question in genome and biological stud-
ies is how the spatial conformation of the chromo-
some in the nucleus affects a number of genetic and
biological functions such as gene regulation [12, 13],
gene expression [14], transcription regulation [15],
DNA repair, and DNA replication [16, 17].
Early studies of chromosome conformation relied on

the use of cytogenetic techniques. An example of the
which is fluorescence in situ hybridization (FISH),
employed to detect the presence of a specific chromo-
some region and the proximity between two regions in a
genome sequence [18, 19]. Fluorescence in situ
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hybridization uses fluorescent probes that bind to specific
regions of a chromosome with a high degree of sequence
complementarity. Using fluorescence microscopy, the lo-
cation of the loci or DNA sequence with which a probe is
expected to bind may be determined. This method is espe-
cially useful, as it allows direct one-to-one estimation of
genome loci proximity. However, due to technical limita-
tions such as low-throughput, low resolution of FISH data,
and probe requirements for every analysis, it is not opti-
mal for examining multiple positions simultaneously. As a
result, the method is not used when studying the
organization of chromosomes at a genome-wide scale.
Other microscopy techniques that have been developed to
study the chromatin organization aimed at providing de-
tails about the genome positioning and activities. Some of
these methods are called the super resolution microscopy
strategies, as they were developed to provide imaging at a
high resolution. Examples are saturated structured illu-
mination microscopy (SSIM), stimulated emission deple-
tion (STED), and ground state depletion (GSD) [20, 21].
The introduction of Stochastic super-resolution micros-
copy techniques such as Photo-activated localization mi-
croscopy (PALM or FPALM) and stochastic optical
reconstruction microscopy (STORM) produced a different
set of ways for investigating the chromatin organization
[22, 23]. Generally, the microscopy techniques for study-
ing the chromatin organization could be categorized as
light and electron microscopy-based techniques. The
more detailed description of the microscopy-based tech-
niques for studying genome organization is given in the
section “Genome Organization by microscopy-based
techniques”.
In 2002, Dekker et al. [24] developed 3C, a

high-throughput methodology that can be used to generate
IFs between nearby genomic loci in a cell population. Since
then, a number of 3C variants [25–27] such as 4C [28], 5C
[29], Hi-C [30], TCC [31], ChIA-PET [32, 33] and, later on,
single-cell Hi-C [34], have been developed to study the 3-D
organization of the chromosome and genome. The
development of 3C techniques has substantially benefited
the study of the spatial proximity, interaction, and genome
conformation of a number of cells. Today, Hi-C is the most
widely used and well-known 3C variant. Using next-gener-
ation sequencing strategies such as high-throughput and
parallel sequencing, Hi-C enables researchers to profile
read-pair interactions on an all-versus-all basis—that is, to
profile interactions for all read pairs in an entire genome. It
also allows them to detect and compute the number of in-
teractions between fragments within a chromosome—i.e.,
the intra-chromosome interaction frequency (IF)—or be-
tween different chromosomes—i.e., the inter-chromosome
interaction frequency. Fragments, alternatively known as
bins or genomic loci, are the regions to which a chromo-
some have been divided into. Each fragment has a defined

length or size which is the number of base pair (bp) in it.
The size of the fragment is determined by the resolution,
e.g. a 1MB resolution signifies that 1,000,000 bp are con-
tained within each fragment.
The IFs obtained are commonly represented in a

two-dimensional matrix, also known as a contact matrix,
with rows and columns representing the number of frag-
ments in the chromosome or genome.
The Hi-C technique is especially relevant because the

IFs it yields can be used to construct 3-D chromosome
and genome structures. These structures, in turn, help
explain a series of events such as genome folding, gene
regulations, the connection between regulatory elements
and the higher-order structural features in the nucleus
of a cell [1, 2, 14, 35, 36].
Within the past decade, a number of computational

methods and algorithms have been proposed for the
construction of chromosome and genome 3-D structures
from Hi-C data. Most of these methods adopt different
strategies for 3-D structure prediction, have different
technical requirements for algorithms, and use different
noise reduction techniques to analyze Hi-C data. In this
review, we categorize these methods based on how they
model IF from Hi-C data, highlight a common approach
to method evaluation and validation, and finally point to
the future direction and challenges of chromosome and
genome 3-D structure prediction.

Description of the Hi-C Experiment and
Chromosomal Contact Map
Using next generation sequencing technology, the
emergence of the Hi-C technique, an extension of 3C,
has enabled the identification of the chromosome con-
formation at a genome wide scale [26, 27, 30, 37, 38].
Compared to other variant of the 3C technique, the
Hi-C technique is the first method [30, 38] to capture
chromosome conformation on a “all versus all” basis
—that is, it can profile interactions for all read pairs in
an entire genome. Hi-C protocol begins by using formal-
dehyde to crosslink the cells, which results in the cova-
lent linking of the chromosomal loci through their
protein-DNA interactions. The cross-linked chromatin
segment is then cut out with a restriction enzyme, and
the segment restriction ends are marked by filing in with
biotin-labeled nucleotides [25, 30]. Next, the resulting
blunt-end segments are ligated randomly under appro-
priate condition for ligation events between the
cross-linked DNA segments. DNA is purified and
sheared, and a biotin pull-down is performed to ensured
that only the biotinylated junctions are selected for fur-
ther high throughput pair-end sequencing and computa-
tional analysis. After the sequencing of the pair-reads,
the generated output usually in .fastq format is mapped
to a reference genome, filtered, and used to create a
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contact map [39]. Notable tools that support the map-
ping of the sequenced pair reads to generate contact
map are GenomeFlow [40], Juicer [41], HiC-Pro [42],
Hi-Cpipe [43], and HiCUP [44].
Interaction frequency, sometimes referred to as con-

tact frequency, is a measure of the number of interac-
tions between a pair of chromosomal or genomic
regions in the Hi-C data [45–48]. The combined contact
counts for all pairwise regions or loci may be repre-
sented as a symmetric matrix to form an IF matrix of all
interacting fragments. The IF matrix is sometimes re-
ferred to as a contact matrix or contact map [30, 47]. A
chromosome contact matrix is a n-by-n matrix repre-
senting the interaction of loci or chromosomal regions
as captured in the Hi-C experiment [27, 30, 31, 49]. The
rows and columns of the matrix correspond to the index
of the equal-sized regions which partition the chromo-
some. The length of one equal-sized region (e.g., 1 Mb
base pair) is referred to as the resolution [30]. Each entry
in the matrix represents a count of read pairs that con-
nect two corresponding chromosome regions in a Hi-C
experiment [30]. Alternatively, the contacts can be rep-
resented in a 3-column sparse matrix [49], where col-
umns 1 and 2 refer to the genomic location or the
fragment number of the interacting loci and column 3
represents the IF between them.

Polymer Model
Polymer models are based on the underlying idea that
interactions between molecular subunits such as mono-
mers result in large molecular structures known as poly-
mers. This approach was adopted from polymer physics,
a branch of statistical physics [50–52]. Polymers pro-
duced by living organisms are referred to as biopoly-
mers. Two well-known examples of biopolymers are
DNA and proteins, with nucleotides and amino acids as
their monomers, respectively. Polymerization involves
the combination of small molecules through chemical
bonding to form a network at equilibrium called a poly-
mer. Various authors have adopted two states of the
polymer to model the architecture of chromosomal re-
gions in a cell: the equilibrium globule [53, 54] and the
fractal globule [37, 55, 56]. A characteristic feature of
the equilibrium globule model is that it is highly knotted
[30]. Mirny [37] has pointed out that this configuration
is disadvantageous, as it restricts genomic processes such
as unfolding—an important property for gene activa-
tion—or refolding [57]. Alternatively, Barbieri et al. [55]
showed that polymer collapse after exposure to a topo-
logical constraint can result in the formation of a
long-lived, untangled, non-equilibrium configuration
state called a crumpled or fractal globule. A fractal glob-
ule is knot-free, and it is organized such that it allows
for unfolding or refolding processes while in a highly

compact state. Hence, the polymer exhibits a “beads-o-
n-a-string” configuration, with beads representing
monomers connected by linkers; DNA connections in
eukaryotic chromatin are similarly configured. The frac-
tal globule can be illustrated as a dense multicolor ball
of yarn, where each color has its own end, but one can
pull out threads with a specific color and put them back
in, without disturbing the structure of the overall ball at
all. This important property makes the fractal globule
suitable for organizing chromatin in a cell because this
topology facilitates rapid and easy unfolding, refolding
[58], and large-scale opening of genome loci loop that
affects and explains biological processes, e.g. the connec-
tion of distal single-nucleotide polymorphisms (SNPs)
with their target genes, gene activation, gene repression,
or the cell cycle [59–63].
When studying these two globules, two biophysical

properties are considered: the genomic distance between
two loci and the probability of contact between them. It
is worth noting that genomic distance (s) is measured by
FISH and contact probability is obtained from chromo-
some conformation methods such as Hi-C. The equilib-
rium and fractal globules yield different estimates for
these properties, and therefore also varying predictions
on the three-dimensional distance between pairs of loci.
Lieberman-Aiden et al. [30] and Mirny [37] reports,
through simulation, that equilibrium and fractal globule
scaling for three dimensional-distance are s1/2 and s1/3

(s: genomic distance - number of nucleotides between
two loci), respectively. Equilibrium and fractal globule
scaling for contact probability are s−3/2 and s−1, respect-
ively. As shown in [37], the properties exhibited by the
fractal globule model make it more effective at fitting
Hi-C data than the equilibrium globule.
Some methods adopt the knowledge about polymer

chain for chromosome structure representation by simu-
lating a physically realistic, bead-chain polymer model of
the 30-nm chromatin fiber [64, 65]. As a result, when
constructing either a chromosome structure for instance,
a locus for a chromosome is represented using a conven-
tional beads-and-spring polymer model, where each
bead represents a specific genomic location with
well-defined initial and final genomic coordinates.
Hence, viewing the chromatin fiber as a polymer model
implies that conformation energies such as bending,
stretching, and excluding energies of chromatin seg-
ments needs to be considered and integrated with the IF
for 3-D structure reconstruction (Fig. 1a).

Spheres and Points
An alternative structure representation model adopted
by methods is representing the chromosome region or
loci as series of connected spheres or interacting points.
Methods using this approach presents the 3-D structure
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in a simplified model, where the spheres [66–68] or
points [45, 46, 69, 70] are synonymous to a chromosome
region or loci of a chromosome (Fig. 1b, c). Using a
beads on string configuration, each bead is modeled as a
spherical shape with a defined radius, and an excluded
volume used to penalize overlaps between two spheres.
The defined radius and the sphere volume could conse-
quently be considered as a restraint to be satisfied dur-
ing the algorithm’s 3-D structure reconstruction process.
The Points representation represent the chromatin re-
gion simply as a point, with no radius nor volume, to
mark the presence or absence of a loci.

Methodologies for Chromosome and Genome 3-D
Structure Reconstruction
The methods for chromosome and genome 3-D struc-
ture inference are categorized below based on the IF
modeling adopted by them. All methods adopt a step-
wise approach to achieve the 3-D structure reconstruc-
tion, and a summarization of these steps is provided in
Fig. 2. In addition, the key properties of these methods
are summarized in Table 1.

Distance-Based Methods
Over the years, a number of approaches have been pro-
posed for chromosome 3-D structure inference from
Hi-C contact data. A group of these methods involve a
two-step process: (1) IF is converted to distance, ultim-
ately defining the problem of 3-D genome or chromo-
some structure reconstruction as a problem of
converting distances into 3-D coordinates; and (2)
non-linear optimization is subsequently applied to the
problem in order to find the genomic coordinates that
satisfy converted distances. The most notable differences
between these proposed methods are: (1) the way in
which IF is converted into distance, and (2) the
optimization technique used to infer the 3-D structure
from loci distance. The aim of a distance-based model-
ing is to create a map that shows the relative spatial po-
sitioning of a number of objects whose inter-point

distance is known. Additionally, representing chromo-
some structure prediction as a distance-based modeling
problem is tempting because methods based on dis-
tances are simple and clear: there is no ambiguity re-
garding metric definition and proximity between objects
can eventually be derived. In relation to 3-D genome
structure prediction, the distance-based approach makes
it easier to handle a large spectrum of modeling prob-
lems at different Hi-C data resolutions.
The distance-based approach attempts to reproduce

the original metric or distance as accurately as possible.
The earliest application of the metric multi-dimensional
scaling (MDS) [82, 99] to chromosome 3-D conform-
ation construction, known as 5C3D [45], assumed that
the relationship of IF to distance between DNA frag-
ments or loci follows an inverse relation; it then used an
optimization approach to find the best 3-D conform-
ation through a misfit objective function of the con-
verted distance and the 3-D Euclidean distance between
points. While this method was applied to the 5C variant
of 3C data, it could be applied to Hi-C datasets as well.
Similarly, in their work based on yeast 3-D genome
structure reconstruction, Duan et al. [66] designed a
metric that estimated the corresponding Euclidean
distance from the mean of the curves obtained from two
restriction enzyme libraries for each contact frequency.
To aid modeling and ensure that intra- and inter-
chromosomal features (e.g., centromeres), distance, and
properties were satisfied [66, 67], researchers introduced
a series of constraints such as minimum and maximum
distances between adjacent beads, minimum distances
between pair beads to avoid overlapping and clashes,
specific positioning of RNA coding regions, telomeres,
and centromeres to guide the construction of the 3-D
model; this constituted an improvement over the
previous method. Duan et al. used IPOPT [71], an
open-source software for nonlinear constrained
optimization problems, to minimize the objective func-
tion; this ensured that the predicted coordinates of two
interacting loci, from which the distance between said

(a) (b) (c)
Fig. 1 Chromosome and genome 3-D structure representation for models from Hi-C data. The different models used for representing 3-D
chromosome and genome structure by various methods using Hi-C data for modeling chromosomes and genome 3-D structure. a polymer
model, b spheres, c points
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loci in the 3-D structure is derived, closely matched the
expected distance obtained from IF. Tanizawa et al. [67]
developed a method similar to [66] to construct the 3-D
structure of the fission yeast genome.
Although Lieberman-Aiden et al. [30] showed that IF

can be used to determine the spatial distance between
interacting loci, certain factors regarding this conversion
are still worth considering. As shown by [76, 100–102]
in their work, the IF-distance correlation might vary
from one dataset resolution to another, and from one or-
ganism to another. Hence, an efficient method is re-
quired for a distance-based approach to generate a more
reliable distance estimate from IF data. To solve this
problem, Zhang et al. [76] made two novel propositions

for the two-step genome structure prediction pipeline.
First, they used a modified version of the golden section
search method [103] to determine the best scale param-
eter, conversion factor (α), to convert IF to its approxi-
mate distance equivalent: Dij ∝ Fij

−α; this ensures that an
appropriate conversion factor is obtained for each data-
set. Secondly, for the 3-D structure prediction from a
distance matrix, they presented an algorithm called
ChromSDE (Chromosome Semi-Definite Embedding).
Unlike earlier methods, ChromSDE relaxed the
optimization problem to a semi-definite programming
(SDP) problem. The proposed approach to IF-distance
conversion defined by Zhang et al. introduced a new
convention for defining the IF-distance relationship,

Fig. 2 Chromosome and genome 3-D structure reconstruction workflow. A summarization of the steps for genome and chromosome 3-D
structure taken by the different methods. Starting from the user input in Step 1: The input preparation, usually, Hi-C contact matrix or sometimes
with extra parameters requirement. Step 2: One of the three IF modeling approach is used to represent the IF depending on the method’s
algorithm. Step 3: Modeling is done using defined sampling algorithms, and Step 4, a consensus average structure or a group of structure is
generated depending on the method’s structure class
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followed by a series of distance-based algorithms that
were subsequently developed.
According to Yaffe and Tanay [104], raw Hi-C data ob-

tained from 3C experiments may contain numerous sys-
tematic biases, such as GC content, length of restriction
fragments, and mappability between fragments. Long--
range frequencies are typically noisy and unreliable; this
represents a substantial drawback for the construction
of 3-D chromosome and genome structures. In order to
overcome these limitations, a number of methods have
been developed to pre-process Hi-C data through
normalization [9, 42, 104–108] before using the data for
3-D reconstruction. Alternatively, certain algorithms for
3-D structure construction incorporate bias removal.
Peng et al. [77] proposed a normalization approach to
reduce experimental sequencing depth bias, which af-
fects the IF yielded by Hi-C data and makes it hard to
compare structures from data obtained from different
experiments. The method, called AutoChrom3D, pro-
vides an automated pipeline for 3-D modeling, enabling
structural comparison at various data resolutions. Two
linear transformations were used to determine the
frequency-distance correlation, and structure was pre-
dicted through nonlinear constrained optimization. Sha-
vit et al. [81] designed an MDS-based optimization
approach that used FISH distance to guide the conver-
sion of IF to Hi-C loci distances; this approach aimed to
reduce noise, improve the data quality, ensure the
consistency of data used for 3-D structure construction,
and cover key functionality features in the Hi-C and
FISH datasets, which will eventually overlap if these fea-
tures are vital. Zou et al. [47] designed a flexible algo-
rithm capable of handling biases introduced by
restriction enzymes during Hi-C data sequencing. Re-
striction enzymes are known to have various cutting
sites across the genome, so combining different Hi-C
tracks provides further information about genomic loci
for modeling. The tool developed by Zou et al., called
HSA, takes advantage of the uniqueness of the contact
map obtained from different restriction enzymes in Hi-C
experiments; it creates a generalized linear model
through an iterative algorithm that combines simulated
annealing and Hamiltonian dynamics. By using HSA,
Zou et al. discovered that the obtained 3-D structure fits
the contact map obtained from different restriction en-
zymes. Bau et al. [72] performed a log transformation
and the Z-score computation to normalize the contact
counts. They converted observed interactions between
loci to points and spatial restraints, and used the Inte-
grative Modeling Platform (IMP) [73] to produce pos-
sible confirmations that satisfies their defined
constraints and maximizes their structure to fit the IF
data. Each loci was first represented as a point con-
nected by a “string” to create a pairwise interaction in

which the length of the string depended on the number
of interactions between the loci.
To date, a number of other distance-based methods

have been developed. These algorithms create 3-D
models by first converting contact frequency to distance
[9, 46, 69, 70, 77, 88, 97, 109, 110] and then apply
optimization to predict chromosome structure. Usually,
these methods perform chromosome 3-D reconstruction
by first defining a random 3-D structure; this structure
coordinates are then updated by an objective function
that is iteratively optimized until a convergence condi-
tion is satisfied. Chromosome3D [46], applied a modified
version of the distance geometry simulated annealing
(DGSA) based method for chromosome and genome
3-D structure reconstruction from Hi-C data. The
DGSA method has been popularly used for protein
structure construction over the years and implemented
in the Crystallography & NMR System (CNS) suite [111,
112]. The Hi-C distances are used as restraints for the
defined simulated annealing (SA) optimization pipeline.
SA is carried out through multiple steps of temperature
change until the defined structure energy is optimally
minimized. Because Chromosome3D uses one of the
rigorously tested approaches in protein structure to in-
ferring chromosome and genome 3-D structure, it is re-
liable and robust against noise in Hi-C data.
LorDG [69] introduced a novel method to address in-

consistent chromosomal contacts generated from
multi-cell Hi-C data. It used a nonlinear Lorentzian
function as the objective function—to enforce the satis-
faction of consistent restraints, which is resistant against
noisy distance restraints. Unlike the square error func-
tion that is susceptible to outliers, LorDG aims to
maximize the satisfaction of realistically satisfied re-
straints rather than unsatisfiable noisy ones. The object-
ive function is optimized by the highly scalable adaptive
step-size gradient descent method. Its resilience against
noisy contacts and scalability make it a suitable method
for constructing the structure of the entire genome in-
volving noisy inter-chromosomal contacts. 3DMax [70]
defined a maximum likelihood objective function for
chromosome 3-D structure inference from Hi-C data. It
is based on the simplified assumption that the contact
data is normally distributed and that each Hi-C data
point is conditionally independent given a structure. A
log likelihood objective function for chromosome struc-
ture reconstruction was defined in order to determine
the structure that maximizes the likelihood function.
3DMax uses a variant of gradient ascent called Adagrad
[113] that adapts the learning rate to each objective
function parameter automatically to regulate its learning
rate. 3DMax is robust against noise and structural vari-
ability, and it is computationally fast and memory
efficient.
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miniMDS [92] and Hierarchical3DGenome [98] are
the distance-based algorithms that reconstruct high-
resolution 3-D models at the topologically associating
domain (TAD) level. Eventually, these TAD models are
assembled to form a complete, high-resolution 3-D
chromosomal structure. After the assembly of TAD
models, Hierarchical3DGenome uses the contacts be-
tween all regions in a chromosome to further refine the
assembled whole chromosome model, which leads to
high-resolution (e.g. 5 KB) models of good quality.
The conformational space of a chromosomal structure

is large, given that Hi-C data are drawn from a popula-
tion of cells, each with its own independent and unique
3-D structure. Hence, an ensemble of predicted struc-
tures obtained through so-called ensemble-based model-
ing appears to provide a better representation of
chromosomal structure than a single structure obtained
through consensus modeling. Unfortunately, like Hi-C
data at large, this dataset contains a number of biases:
the fact that it is noisy, coupled with other technical fac-
tors, makes it extremely difficult to determine the vari-
ous unique 3-D structures of cells used in Hi-C
experiments. Due to the drawbacks involved in using
multi-cell Hi-C data, studying single-cell Hi-C data has
become increasingly relevant [34]. In particular, it does
not require designing an algorithm to satisfy the variabil-
ity of each cell used in the Hi-C experiment. As ex-
pected, single-cell Hi-C datasets are sparser than
multi-cell Hi-C datasets. Hence, conventional distance-
and restraint-based methods are not suitable for 3-D
structure reconstruction based on these data. Carstens
et al. [90] extended Rieping et al.’s [114] Bayesian prob-
abilistic framework to statistically infer ensembles of 3-D
chromosome structures from single-cell Hi-C data using
MCMC sampling. They combined single-cell Hi-C con-
tact information with FISH data and a coarse grained
model of the chromatin fiber. Lesne et al. [79] formu-
lated a two-step algorithm known as “shortest-path re-
construction in 3-D” (ShRec3D), which combines the
shortest-path distance between two points from graph
theoretic methods with MDS to achieve chromosome
reconstruction. This method is designed for both
multi-cell and single-cell Hi-C data. In the case of
single-cell Hi-C data, instead of distances between two
points, binary numbers signify the presence or absence
of interaction. ShRec3D+ [96] extended Lesne et al.’s al-
gorithm by using a golden-section algorithm (an ap-
proach similar to Zhang et al. [76]) with an adaptable
distance conversion factor for different Hi-C chromo-
some datasets. Wang et al. [64] proposed a method that
combined knowledge of the conformational energy
model of a chromatin structure and a Bayesian inference
approach. They represented the chromosome structure
as a polymer model with a conformational energy, and

integrated the IF data as input for an expectation
maximization based algorithm under a Bayesian like
framework. They took advantage of the prior informa-
tion about the conformation energy to construct a
Bayesian inference of the chromatin structure. An ap-
proach proposed by Paulsen et al. [84] employed
manifold-based optimization (MBO), which is basically
the application of optimization techniques to the mani-
fold of positive semi-definite matrices of fixed rank
[115]. Paulsen et al. reported that MBO is capable of
generating a consensus 3-D chromosome structure con-
sistent with the original contact map.
Another approach for solving the distance-based prob-

lem is called non-metric multidimensional scaling
(NMMDS), which assumes that only distance ranks are
known; distances themselves are not provided. The
method aims to yield a map of these ranks [116, 117].
Using this approach, Ben-Elazar et al. [118] developed a
method for structure prediction based on the hypothesis
that a pair locus A with a higher IF is closer in 3-D space
than any other locus pair B with a lower frequency. Varo-
quaux et al. [78] also proposed an optimization method to
solve the NMDS problem by minimizing the
Shepard-Kruskal scaling cost function [119].

Contact Based Methods
Certain methods do not convert IF but use it directly for
modeling. These methods are regarded as contact-based
methods [15, 80, 83, 91, 93]. MOGEN [49, 80] used con-
tact directly and designed an optimization-based ap-
proach that relied mostly on Hi-C intra- and
inter-chromosomal contact data to build an ensemble of
3-D conformations for genome and chromosome struc-
tures. The contact-based optimization is carried out by
the adaptive step-size gradient descent/ascent method
that is highly scalable and therefore is well suited for
large-scale genome structure modeling. MOGEN does
not require two contacted regions to satisfy a specific
distance as the distance-based approach does. Instead it
only tries to make the distance between the two contact
regions below a threshold (i.e. in contact). MOGEN is
capable of producing ensemble models that are highly
consistent with each other. MOGEN is also robust
against noise in the data, particularly the noise in
inter-chromosomal contacts, and therefore it is able to
build 3-D structures of large genomes such as the entire
human genome. Gen3D [83] used a series of meta-heur-
istic algorithms (e.g. genetic algorithms and simulated
annealing) to infer 3-D structure from IF. Zhu et al. [93]
proposed a manifold-based framework called GEM,
which first uses IF to create an interaction network
representing the spatial organization of the loci from
Hi-C data. Zhu et al.’s aim was to use a manifold learn-
ing algorithm to uncover the low-dimensional (3-D)
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geometry embedded in a high-dimensional (Hi-C) space,
while satisfying certain defined conformation energy re-
quirements. An improvement over this method inte-
grates Hi-C data with FISH data for 3-D structure
inference [94]. To ensure the modeling of realistic struc-
tures consistent with cellular organization, Paulsen et al.
[91] introduced Chrom3D, a genome-modeling algo-
rithm that combines Hi-C and Lamina-associated do-
main (LAD) information from ChIP-seq data to generate
an ensemble of 3-D genome structures in which loci and
TAD positioning and interaction requirements are
satisfied.
On the other hand, certain methods convert contact

frequency into defined spatial restraints. As is the case
with distance-based approaches, these restraints are sat-
isfied through an optimization method. In their seminal
study, Kalhor et al. [68] developed a 3C variant known
as tethered conformation capture (TCC), aimed at in-
creasing the signal-to-noise ratios in conformation cap-
ture experiments. This is relevant because it allows for a
more accurate representation of IF, especially for gen-
ome structure analysis, where low inter-chromosomal
interactions are recorded using existing approaches.
Using TCC data, researchers proposed a novel modeling
approach whereby a variety of genome structures were
generated. This approach, called population-based mod-
eling, produces a population of structures representative
of genomic configuration and consistent with contact
probability. Serra et al. [85] followed certain constraints
in order to transform IF into spatial restraints; for in-
stance, consecutive and non-consecutive loci were
treated differently. As in the case of Bau et al. [72], these
restraints were satisfied by using the IMP.

Probability Based Methods
Methods in this category define a probabilistic measure
for contact frequency, hence their name. Using a probabil-
istic approach to model 3-D structures has a number of
advantages; key among them is that such an approach al-
lows uncertainties in experimental Hi-C data to be easily
considered through probabilistic representation. In
addition, statistical calculations of specific structural prop-
erties or noise sources can be carried out. Due to the fact
that Hi-C data are drawn from cell populations, IF can be
considered as an average; most probability-based methods
assume that an ensemble of structures underlies a contact
map. In addition, they consider the problem of 3-D struc-
ture inference as either a Bayesian inference problem or a
maximum likelihood problem. However, some probabilis-
tic modeling may be more time consuming than other
methods.
Rousseau et al. [48] developed the first method in this

category, called MCMC5C. They defined a probabilistic
model of IF and used a Markov chain Monte Carlo

(MCMC) sampling to generate an ensemble of struc-
tures. MCMC5C through a Gaussian model based on
Hi-C data, whose variance was estimated using an im-
provised approach. A MCMC sampling-based algorithm
was selected over alternatives methods because of its in-
herent ability to estimate the distribution of various
structural properties. As previously mentioned, raw
Hi-C data contain a number of systematic biases such as
GC content, restriction enzyme cutting frequency, and
sequence uniqueness [104]. These factors all need to be
considered when designing a 3-D genome reconstruc-
tion method. To overcome these limitations, Hu et al.
[75] proposed two Bayesian models for 3-D genome
structure reconstruction from Hi-C data. Their methods
combined bias removal with 3-D genome structure con-
struction. They corrected known biases and used a Pois-
son model to fit contact data, an improvement over
MCMC5C when it came to estimating the Gaussian
variance. Varoquaux et al. [78] also defined a probabilis-
tic model of IF. Similar to the model defined by Hu et
al., it defined the structure inference problem as a max-
imum likelihood problem and used an optimization
method to solve it.
A typical drawback of high-resolution Hi-C data is the

sparsity of long-range contacts on the contact matrix
and the high proportion of zero-contact counts between
loci in the matrix. Hence, certain existing methods
might be incapable of modeling at a higher resolution.
Park and Lin [87] proposed an algorithm that is robust
to resolution specification and corrects known system-
atic biases. They modeled the contact count using a
Poisson distribution and addressed excess zero problems
in high resolution datasets. They suggested that these
problems could be solved by adjusting the Poisson distri-
bution adopted for modeling.
Nagano et al. and Stevens et al. [34, 120, 121] applied

a simulated annealing technique to sample single-cell
datasets, while sometimes using contacts as distance re-
straints at different data resolutions. A novel study by
Tjong et al. [86] has proposed a population-based mod-
elling approach called PGS. Different from the
ensemble-based approach—where a variety of structures
with different variabilities are generated to simulate the
heterogeneity of cells in the Hi-C experiment—the
population of genome structures generated by PGS is
consistent with the normalized contact probability
matrix. Tjong et al. have formulated a probabilistic
framework that uses an EM algorithm with constraint
assignment at the E step and optimization of the struc-
ture population through simulated annealing and conju-
gate gradient descent at the M step. This method takes
advantage of other external experimental data, such as
lamina information for improved modeling. Rosenthal et
al. [95] proposed an approach to recover missing
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contacts in single-cell Hi-C contact maps by filling miss-
ing parts with structures obtained from the correspond-
ing cell populations, while imposing certain penalties on
the generated structures.

Correcting Biases in Hi-C Data by Data
Normalization
As is the case for most sequencing experiments, raw
Hi-C data contain several systematic biases that could
potentially affect the 3-D genome reconstruction. An
inexhaustive list of these systematic biases include GC
content, distance between restriction sites, restriction
enzyme cutting frequency, sequence uniqueness, and ex-
perimental artifacts [104]. In a Hi-C experiment proto-
col, a minimum of 25 million cells was used to produce
a Hi-C library [27, 30, 38, 69] with the goal of analyzing
the contact frequencies between genomic sites in a cell
population. One of the reasons for using a population of
cells in Hi-C experiments is more sequence reads can be
produced from a population of cells than a single cell.
The number of paired-end reads linking two genomic

regions is interpreted as the interaction frequency be-
tween two genomic regions. This implies that a higher
interaction frequency on a contact map means that a
higher read count was observed, and that the two re-
gions are spatially close to each other. However, many of
these systematic biases affect the observed Hi-C read
counts for two interacting regions (or fragments) on a
contact matrix [106]. Hence, when these biases are left
unhandled, the 3-D model construction is predicated on
inaccurate information and consequently may be ad-
versely affected. Additionally, if the effect of duplication,
deletion, inversion and ploidy is significant in the pair
reads, this could cause a direct effect on the number of
paired-end reads linking two genomic regions which will
alter the derived contact map. Because the Hi-C contact
data is used for 3-D genome modeling, the level of cor-
rectness of the Hi-C data largely determines the accur-
acy of the generated model.
To overcome these limitations, most 3-D reconstruc-

tion methods apply normalization methods that focus
on removing biases introduced by experimental proce-
dures and by intrinsic properties of the genome to pre-
process the data [9, 42, 104–108]. With the application
of a normalization and pre-processing technique before
3-D genome reconstruction, the noise and systematic
biases introduced by external factors, such as DNA
shearing, and cutting, during the Hi-C experiment
makes the Hi-C data more suitable for chromosome/
genome 3-D structure reconstruction. Alternatively,
some probability-based reconstruction methods handle
the noise and biases differently by taking the biases into
consideration in their algorithm design [75].

A common problem observed in some Hi-C data is
the omission of the contact frequency of some genomic
positions in the contact matrix. When this occurs, the
reconstructed 3-D model from this data varies across
the different tools due to difference in the way the
methods represent omissions in their 3-D model. Gener-
ally, this leaves some doubt about which 3-D model is
better when this occurs.

Validation and Evaluation
According to the literature on chromosome and genome
3-D construction methods, algorithms are most often
validated by a simulated dataset to assess their recon-
struction ability, the consistency with the Hi-C data,
known genome and chromosome structural features
[49], or Fluorescence in situ hybridization (FISH) data.
In the simulation case, most methods use a 3-D polymer
model meant to serve as a gold standard model with
which to compare the final 3-D reconstructed structure.
A set of chromosomal contact data is then simulated
from this structure, and a certain degree of Gaussian
noise is often added to the data as well. The noise is
usually added to assess the methods’ responsiveness and
accuracy to noisy data. Eventually, the algorithms’ ability
to reconstruct the true model is tested. A commonly
used synthetic dataset is the one generated by Trussart
et al. [122]. Trussart et al. created a series of simulated
Hi-C contact matrices in which genomic architectures
are pre-defined, and the noise level and structural vari-
ability (SV) are both simulated.
FISH provides a powerful tool for identifying the loca-

tion of a DNA sequence. It is used to study the 3-D
organization of chromosomes and genomes and deter-
mine the proximity of a gene relative to other genes
through the use of fluorescent probes [123]. It has been
determined to be much more accurate, simple, and reli-
able than all other molecular profiling techniques [124].
Hence, it is often used to determine the distance be-
tween loci in a genome and for single-cell analysis of
gene and loci positioning [125–128]. However, its major
limitations are low throughput and resolution at higher
scales, such as the entire genome or an ensemble of
cells. Nonetheless, FISH data can be used to validate the
distance between loci in a reconstructed 3-D structure
at a lower scale. Given that the FISH method is consid-
ered reliable, it is useful in the study of chromosomal
and genomic 3-D spatial organization when loci in the
structure being evaluated are physically proximal.
Once the structure construction is complete, a method

is often needed to assess its accuracy. The most com-
mon approach to structure evaluation is to calculate the
Pearson correlation coefficient (PCC), the Spearman cor-
relation coefficient (SCC), or the root mean square error
(RMSE) of the distance representation of the Hi-C data

Oluwadare et al. Biological Procedures Online            (2019) 21:7 Page 13 of 20



and the Euclidean distance of the 3-D chromosomal
structure. Since these metrics are obtained for distance,
they are sometimes referred to as the distance Pearson
correlation coefficient (dPCC), the distance Spearman
Correlation Coefficient (dSCC), and the distance root
mean square error (dRMSE). The value of dSCC and
dPCC is in the range of − 1 to + 1, with higher values be-
ing preferable. In the case of dRMSE, on the other hand,
a lower value is preferred. The latter may vary between
0—which signifies no difference between distances—and
a large upper limit dependent on the number of frag-
ments in the structure being compared when they are
completely different. The dRMSE is also an appropriate
metric to assess the similarity between 3-D structures.
In order to do so, a linear transformation that includes
translation, orthogonal rotation, and rescaling is per-
formed on one of the structures, so that they are at the
same 3-D-coordinate scale as in [49].
Let the pairwise distance between Hi-C data IF be rep-

resented by the vector {Di, …, Dn} and the Euclidean dis-
tance between loci in a 3-D chromosome model be
represented as {EDi, …, EDn}, where n is the number of
loci pairwise distances. The dSCC, dPCC, and dRMSE
can be computed as shown below:

(1) The dPCC is defined as:

dPCC ¼
Pn

i¼1 Di−D
0� �

EDi− ED
0� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1

�
Di−D

0�2Pn
i¼1

�
EDi−ED

0 �2
r

where:

� Di and EDi are single distance samples indexed with
i,

� n is the number of loci pairwise distances,
� D

0
and ED

0
represent sample means. D

0 ¼ 1
n

Pn
i¼1Di,

ED
0

= 1
n

Pn
i¼1EDi .

(2) The dSCC is defined as:

dSCC ¼
Pn

i¼1 Ai−A
0� �

Bi−B
0� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 Ai−A
0 Þ2Pn

i¼1 Bi−B
0 Þ2

��r

dSCC is calculated by converting distance variable Di

and EDi into ranked variables Ai and Bi i, and then, com-
puting the dPCC between the ranked variables. Hence,

the pairwise distances Di and EDi are converted into
ranked variables Ai and Bi respectively,
where:

� Ai and Bi are the ranks of two distances, Di and EDi

respectively.
� A

0
and B

0
represent sample means of rank.

A
0 ¼ 1

n

Pn
i¼1Ai, B

0
= 1

n

Pn
i¼1Bi .

(3) The dRMSE is defined as:

dRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

X
Dij−EDij
� �2

r

� where Dij and EDij represent the pairwise distance
between loci i and j of the Hi-C IF data and 3-D
structure Euclidean distance

� n is the number of loci pairwise distances.

Microscopy-Based Techniques for Studying
Genome Organization
Although this review highlights the methods for genome
structure reconstruction from Hi-C data, it is note-
worthy to examine the complementary imaging methods
used for studying the genome organization before and
after the emergence of high-throughput sequencing
techniques. For many years, the structure of the genome
has been studied through various microscopy techniques
[23, 129–134] which can be broadly divided into elec-
tron and light microscopy.
The light microscope alternatively referred to as the

optical microscope is a well-known research tool that
uses visible light to detect small objects. Over the years,
light microscopy has greatly enhanced the study of the
events and the structural details in the cell nucleus.
However, the light microscopy techniques have a
well-known limitation for being unable to overcome the
diffraction barrier. As a solution to this, several strat-
egies have been proposed to bypass the diffraction bar-
rier of light microscopy and increase resolution. These
strategies are called the super resolution microscopy
strategies. They include saturated structured illumin-
ation microscopy (SSIM), stimulated emission depletion
(STED), and ground state depletion (GSD) [20, 21]. The
introduction of Stochastic super-resolution microscopy
techniques such as Photo-activated localization micros-
copy (PALM or FPALM) and stochastic optical recon-
struction microscopy (STORM) ushered in a new wave
of discovery about the genome organization [22, 132,
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135]. These techniques allow obtaining images at a higher
resolution because they are not limited by the diffraction
barrier in optical microscopy. These methods use flores-
cent probes for imaging in multiple colors and support
the selection of many fluorescent molecules at a very high
resolution to build point by point images that display the
relationship between points [135]. The STORM and
PALM techniques elevated the visualization of the gen-
ome structure to an incredibly high resolution. Ricci et al.
[136] used the STORM technique to visualize the chro-
matin fiber structure of different cells at a nanoscale reso-
lution, single cell level, which revealed nucleosome groups
along the chromatin fiber which they called “nucleosome
clutches”
One type of light microscopy technique, fluorescence

microscope, uses fluorescence and phosphorescence to
study the properties of and visualize an object or cellular
component of a cell. The fluorescence microscopy tech-
nique uses a light intensity that is significantly higher
than other light microscopy techniques [137–139].
Fluorescence microscopy technique is effective at visual-
izing fluorescent dyers stains [140–142] as well as auto-
fluorescence cellular structures i.e. biological structures
which naturally emit fluorescent light [139]. The tech-
nique is also used when studying the expression and the
localization of proteins using fluorescent antibodies in a
biochemical strategy called immunofluorescence. The
fluorescence dyers stains are used to determine cellular
structure and identify specific targets of interest within a
cell. A major limitation of the fluorescence microscopy
technique is photobleaching. Photobleaching causes the
fading of the dye or a fluorophore molecule making it
lose its fluoresce properties, hence rendering the protein
molecules or object invisible. Fluorescence recovery after
photobleaching (FRAP) [143, 144], and Fluorescence loss
in photobleaching (FLIP) [145] analysis are fluorescence
microscopy technique used to examine diffusion and
molecular movement respectively in a cell. FLAP, FRET
and FLIM are also advanced fluorescence microscopy
techniques that are used in biological and biomedical
research [146].
For some time, the 3-D genome organization was

largely discovered through the fluorescent in situ
hybridization (FISH) technique. The FISH [2, 18, 19]
technique uses a florescence probe to detect specific
DNA (or RNA) sequences or selected genome loci in
single cell nuclei by light microscopy. Today, there are
different types of FISH, each with their specialized func-
tion e.g. DNA-FISH, RNA-FISH, cryo-FISH e.t.c. [147].
These variants are more prolific than FISH because of
their accuracy, and reliability. FISH techniques allow the
conceptualization of the arrangements of genetic mate-
rials in the cell nucleus. The FISH technique has re-
vealed that the chromosomes occupy discrete territories

in the cell nucleus, referred to as chromosome territories
(CT) [2, 148], CT intermingle significantly in the nucleus of
human cells [149], the influence of gene density and tran-
scription on chromosome organization in the nucleus [150,
151], and the genome organization in the nucleus based on
the partitioning of the chromosomes regions according to
the gene distribution [152, 153]. The findings have in-
creased the understanding about the genome architecture
and behavior in the nucleus of the cell. However, the FISH
technique can only be used to examine predetermined
regions in cells. To resolve this, a fully automated
FISH-based imaging pipeline called High-throughput im-
aging position mapping (HIPMap) was developed to
perform high-precision, high-throughput, automated fluor-
escent in situ hybridization imaging of the spatial location
of genome regions at large scale [154].
Electron microscopes uses a beam of high energy elec-

trons to examine objects and obtain information about
that object or a specimen. This provides the information
about the surface characteristics, composition of the ele-
ments that makes up the object, the particles within the
objects, and the arrangement of the atoms within the
object. It was developed due to inability of the light
microscope to examine the information about structure
of smaller objects. The development of the electron
microscope improved the resolution so that tiny objects
e.g. atom can be observed under this microscope. To
examine objects only observable at the higher resolution
e.g. the examination of a cell nucleus, the Electron
microscopic techniques such as the, Transmission Elec-
tron Microscope (TEM) where instead of using light to
illuminate the specimen, a high energy electric beam is
used. The scanning electron microscope (SEM), reflec-
tion electron microscope (REM), scanning transmission
electron microscope (STEM), and the cryo-electron mi-
croscopy (Cryo-EM) are other forms electron micro-
scopes techniques each with the unique method for how
the structure and composition information is gained
from the object [155–159]. Cryo-EM especially has pro-
duced very useful insights by enabling the determination
of atomic resolution level macromolecular structures
[160–162]. In protein structure research, Cryo-EM has
been used to capture protein structure in its native state.
Some methods have been developed to complement the
microscopy techniques. Ou et al. [163] combined elec-
tron microscopy with a labeling method to reveal the
3-D organization across multiple scales in the cell nu-
cleus They developed a method called ChromEMT that
reveals the 3-D packing of the DNA in cells, and
through their method reveled information about the
DNA folding as it relates to the genome compaction in
the cell nucleus.
For many years, the FISH and the microscopy-based

techniques have given scientists insight about the spatial
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organization and architectural arrangement in the nu-
cleus while providing explanation for nuclear posi-
tioning in the cell nucleus. Some of these findings
include: the discovery of chromosome territories [2],
the organization of gene clusters and their influence
on transcription in the nucleus [51, 52], the segmen-
tation of chromatin in the cell nucleus, for example,
the active euchromatin and inactive heterochromatin
occupy separate environments in the nucleus [164],
and the existence of unique compartments that influ-
ences functional interaction [165–168].
These methods provide valuable information regarding

the genomes organization that can be used as base infor-
mation when constructing models with Hi-C data. For
example, it is common practice to use the results of
FISH experiments as validation for chromatin conform-
ation models generated by Hi-C experiments. This can
be done by verifying that the spatial distances observed
between multiple FISH probes are consistent with the
predicted distance between the corresponding genome
bins found in the Hi-C conformation model.
Despite the advancements in the FISH and the micros-

copy approaches, they are limited to studying a region of
genome, and do not provide a universal and comprehen-
sive view of the 3-D genome architecture [169] of the
whole genome. The need to study the genomic
organization at a genome wide scale led to the develop-
ment of the chromosome conformation capturing
techniques. However, it is worth noting that the
chromosome conformation capturing techniques and
the imaging techniques of probing genome/chromosome
structures are complementary and the latter can experi-
mentally validate the former.

Summary and Future Insights
Our review of the methods for reconstructing the 3-D
structure of the chromosome and genome has revealed
that these methods can be largely categorized into three
groups (distance-based methods, contact-based methods
and probability-based methods) according to how IF is
modeled. For each category, we have discussed their po-
tential strength and weakness in reconstructing 3-D
chromosome and genome structures. Although we have
primarily grouped methods based on IF modeling, there
are other ways they could be categorized. For instance,
their classification could be based on the type of struc-
ture they generate [72, 78]. Methods that generate a sin-
gle representative structure for a Hi-C dataset are
consensus-based methods [66, 67]. Those that generate
a variety of structures to represent the heterogeneity of
Hi-C data are ensemble-based methods [45, 48]. Finally,
population-based methods [68, 86, 89] generate a popu-
lation of structures that, as a whole, is statistically con-
sistent with the Hi-C data.

Despite the improvement in 3-D structure modeling
approaches, the lack of a real structure with which to
contrast these models remains a challenge. In particular,
it is currently difficult to confirm the true modeling cap-
ability of 3-D genome methods. Although the introduc-
tion of 3-D-FISH data and Hi-C data for joint modeling
has received some attention recently [94], there is no
sufficient 3-D-FISH data to guide most modeling on
Hi-C data and to thoroughly validate the quality of com-
putational models. The development of more advanced
genome/chromosome imaging techniques will further
improve the validation of 3-D genome models. In
addition, other high-throughput sequencing data such as
functional genomics and epigenomics data can be used
to validate the biological validity of 3-D genome/
chromosome models by exploring their correlation with
3-D genomes.
Another challenge is to reconstruct high-resolution

3-D models of large genomes from Hi-C data,
which are needed for studying detailed interactions be-

tween genes and regulatory elements, due to enormous
time complexity and data sparsity associated with
high-resolution modeling. Only a few methods [98] was
designed to build high-resolution (e.g. 5 KB) models.
Finally, it is important to make 3-D genome modeling

methods easy for biomedical scientists to use in their re-
search. To this end, a few tools have been designed to
visualize 3-D genome models [88, 89, 170–174]. Re-
cently, GenomeFlow [40] provides a comprehensive
graphical environment for users to process Hi-C data,
generate chromosomal contact maps, build 3-D models,
and apply 3-D models to integrate various omics data.
More efforts of making 3-D genome modeling accessible
to general users are still needed.
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