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Abstract

Tocotrienols (T3) have been shown to represent a very important part of the vitamin E family since they have opened
new opportunities to prevent or treat a multitude of age-related chronic diseases. The beneficial effects of T3 include
the amelioration of lipid profile, the promotion of Nrf2 mediated cytoprotective activity and the suppression of
inflammation. All these effects may be the consequence of the ability of T3 to target multiple pathways. We here
propose that these effects may be the result of a single target of T3, namely senescent cells. Indeed, T3 may act
by a direct suppression of the senescence-associated secretory phenotype (SASP) produced by senescent cells,
mediated by inhibition of NF-kB and mTOR, or may potentially remove the origin of the SASP trough senolysis
(selective death of senescent cells). Further studies addressed to investigate the impact of T3 on cellular senescence “in
vitro” as well as in experimental models of age-related diseases “in vivo” are clearly encouraged.

Introduction
Tocotrienols (T3) have been shown to represent a very
important part of the vitamin E family since they have
opened new opportunities to prevent or treat a multi-
tude of age-related chronic diseases [44]. Experiments
conducted in both mice and humans have shown poten-
tial health benefits from T3 supplementation, including
a distinctive and effective anti-inflammatory activity.
They were shown to exert a lipid-lowering effect and a
superior anti-inflammatory activity compared to tocoph-
erols in cardiovascular diseases (the other class of Vita-
min E compounds) [71, 92]. The anti-inflammatory
activity of T3 has been also proposed as the main mech-
anism of action of T3 explaining the amelioration of
conditions related to a diet-induced metabolic syndrome
in rats [88]. The anti-inflammatory activity of T3 has
been also proposed to contribute to their protection
against neurodegenerative diseases, including Alzhei-
mer’s disease (AD) [90], and alcohol-induced cognitive
impairment in rats [82]. Suppression of inflammation
has been also proposed among the mechanisms by

which T3 can counteract the ability of cancer cells to
proliferate, metastasize, evade apoptotic signals, and de-
velop chemoresistance [54]. Last but not least, low
intake and serum levels of tocopherols and T3 have been
associated with several age-related pathologies including
osteoporosis, sarcopenia and cognitive impairment [72].
In this review, we summarize the broad range of

anti-inflammatory effects of T3 on aging and the main
age-related diseases with the aim to provide a common
mechanistic rationale through which tocotrienols may
exert their pro-longevity and pro-health action. In par-
ticular, we suggest that part of the anti-inflammatory
effects of these natural compounds can be due to their
modulation of the senescence-associated secretory
phenotype (SASP) produced by senescent cells (hence
the meaning of the “SASPected” term in title), which ac-
cumulation in aging has been proposed as a key patho-
logical mechanism in different age-related pathologies.

Influence of Tocotrienols on Lifespan in Model
Organisms and on Biomarkers of Aging
Experimental evidence has supported a role of T3 in
modulating several mechanisms associated with aging.
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The effect of Vitamin E supplementation on lifespan
has been analysed in various model organisms of in-
creased complexity, including single-cell organisms and
rotifers, nematodes, flies, mice and rats [15]. Most of the
studies conducted in single cell organisms, rotifers, and
nematodes reported an increase in the mean lifespan
without any effect on the maximal lifespan. In almost all
these studies, organisms were supplemented with
a-tocopherol, some of them with γ-tocopherol, and only
one analysed the effect of T3 supplementation.
T3 supplementation was performed in the model-sys-

tem nematode, C. elegans. The treatment reduced the
accumulation of protein carbonyl (a good indicator of
oxidative damage during aging) and extended of 20% the
mean lifespan, but not the maximum lifespan [1]. A
tocotrienol-rich fraction (TRF) from palm oil (composed
of α-tocopherol, 22%; α-tocotrienol, 24%; γ-tocotrienol,
37%; δ-tocotrienol 12%) also recovered the shortened
mean lifespan induced by ultraviolet B irradiation. The
administration of 8 or 80 mg/ml of TRF to C. elegans
resulted in an extension of the mean lifespan, whereas
80 mg/ml of α- tocopherol alone did not. This effect was
attributed to the higher antioxidant activity of T3 com-
pared to tocopherols [1]. Importantly, T3 are recognized
among those compounds that are able to activate the
nuclear factor erythroid-2-related factor 2 (Nrf2) [38],
which modulates the transcription of a multitude of
cytoprotective genes and is argued to be a lifespan and
healthspan extending factor.
Unfortunately, no studies have been conducted until

now to evaluate the effect of T3 on the lifespan of in-
sects, rodents, or humans.
However, some studies have provided evidence that

treatment with T3 may partly affect some biomarkers of
aging. In humans aged above 50 years, TRF supplemen-
tation for six months decreased DNA damage [8] and
reduced the levels of advanced glycosylation end prod-
ucts (AGE) and protein carbonyls [9], which play im-
portant roles in aging, diabetes and cardiovascular
diseases. A study investigated whether TRF can modu-
late collagen synthesis and degradation in human diploid
fibroblasts (HDFs) exposed to a dose of H2O2 able to in-
duce premature senescence. TRF upregulated collagen
genes, type I and type III procollagen synthesis, and
downregulated matrix metalloproteinases (MMPs) genes
and activity in HDFs, suggesting that TRF may protect
the skin from aging by enhancing collagen synthesis and
inhibiting collagen degradation [37].
Based on this evidence and on the limited toxicity

of these natural compounds, it is not surprising that
T3 supplementation has become an interesting
intervention to target fundamental aspects of aging
that play a role in the onset and progression of
age-related diseases.

Tocotrienol Supplements in the Prevention and
Treatment of Age-Related Pathologies
Experimental and clinical evidence has been provided
that T3 supplements may exert beneficial effects in dif-
ferent age-related pathologies. Moreover, T3 have
demonstrated their effectiveness also in chronic inflam-
matory diseases where tocopherols do not seem to
determine similar benefits.
In the subsequent text, we will discuss these distinctive

properties of T3 in age-related pathologies.

Cardiovascular and Metabolic Diseases
T3 have been widely studied for their vascular- and
cardio-protective properties. T3 supplement may be able
to ameliorate the profile of important risk factors in the
development of cardiovascular diseases, such as choles-
terol and hypertension. The ability of T3 supplements to
reduce cholesterol levels has been demonstrated both in
animals [46, 64, 95] and humans [62, 63, 65, 69]. The
most impressive reduction of cholesterol was reported in
chickens consuming diets supplemented with gamma-
and delta-T3. Indeed, these animals showed a reduction
of 32% total cholesterol and 66% LDL cholesterol after
T3 supplementation [95] which was not obtained with
alpha-tocopherol supplementation. Similarly, gamma-
and delta-T3 supplements led to a significant decrease
in total and low-density lipoprotein (LDL) cholesterol in
genetically hypercholesterolemic pigs [64] and humans
[67, 68]. Conversely, alpha-tocopherol supplements did
not contribute to this effect [45] and may even interfere
with T3 activity [69]. Administration of T3 in the form
of a tocotrienol-rich fraction (TRF25) yielded a similar
reduction of total and LDL-cholesterol with a concomi-
tant decrease of apolipoprotein B and triglycerides com-
pared to the baseline values in hypercholesterolemic
humans [69]. The effect of T3 on cholesterol levels was
demonstrated to be dependent by their ability to down-
regulate the 3-hydroxy-3-methyl-glutaryl-coenzyme A
reductase (HMG-CoA reductase, HMGR) enzyme which
is the rate-limiting enzyme of the cholesterol biosyn-
thetic pathway. The mechanism of their hypolipidemic
action seems to involve a posttranscriptional suppression
of HMGR [59] by a process that involves ubiquitination
and degradation of the enzyme [76]. However, there are
also controversial findings to those showing substantial
cholesterol reduction after T3 supplementation. For ex-
ample, a study performed with commercially available
tocotrienol supplements at a level of 200 mg total T3/
day showed no measurable beneficial effect on key CVD
risk factors (including blood cholesterol) in highly com-
pliant adults with elevated blood cholesterol concentra-
tions [49]. Interestingly, a synergistic effect of TRF25
(but not alpha-tocopherol) and lovastatin, a widely used
drug (an HMG-CoA reductase inhibitor) to reduce lipid
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levels in hypercholesterolemic subjects [67, 68] has been
also reported, thus suggesting that T3 may also act with
different mechanism of actions from HMG-CoA reduc-
tase inhibition.
Besides to their effect on lipid metabolism, T3 may in-

fluence cardiovascular system in other ways. It has been
shown that treatment with T3 can reduce the size of ath-
erosclerotic lesions in Apo-E-deficient mice (−/−) (a
mouse model that develop complex atherosclerotic le-
sions similar to those of humans). The authors observed
that the reduction in the size of atherosclerotic lesions
was not explained by alterations in lipid metabolism and
hypothesized that the effects were the consequence of a
reduction of inflammation [67, 68].
Indeed, treatment with T3 is able to suppress the induc-

tion of tumor necrosis factor (TNF), Interleukin-1 beta
(IL-1β) and interleukin-6 (IL-6) in lipopolysaccharide
(LPS) stimulated peritoneal macrophages obtained from
6-week-old BALB/c female mice [66]. Moreover, the ef-
fects of T3 on plaque size of Apo-E-deficient mice were
retained (even if to a lesser extent) when the treatment
was delayed from 6 to 16 weeks, thus suggesting that T3
may act even after atherosclerotic lesions have been devel-
oped. Although the authors did not investigate if T3 may
affect the accumulation of senescent cells and SASP
production, the results are very similar to those obtained
with the experimental removal of senescent cells in
atherosclerosis-prone low-density lipoprotein receptor-de-
ficient (Ldlr−/−) mice [7]. In this study, it has been shown
that senescent macrophages, endothelial cells, and vascu-
lar smooth muscle cells drive the atherosclerotic path-
ology by increasing expression of key atherogenic and
inflammatory cytokines and chemokines. Indeed, the
clearance of senescent cells from advanced lesions inhibits
both plaque growth and maladaptive plaque remodelling
processes associated with plaque rupture. The similarity
between the two studies may suggest that the beneficial ef-
fects on the atherosclerotic model displayed by T3 could
be the consequence of their capacity to modulate the pro-
duction of SASP or the propensity of senescent cells to
undergo apoptosis.
A consequence of arterial stiffness is hypertension (high

blood pressure). In this process, chronic inflammation pro-
duced by senescent cells has been proposed to play a major
role [20]. Interestingly, T3 administration determined a sig-
nificant reduction of blood pressure and improvement in
other cardiovascular, metabolic and inflammatory markers
in spontaneously hypertensive rats [55], in diet-induced
metabolic syndrome in rats [6, 88] as well as in high fat
diet-fed rats [87].

Cancer
One of the first evidence supporting the protective effect of
T3 in cancer was based on a study focused on the role of

various high-fat diets in 7,12-dimethylbenz(a) anthracene
induced mammary tumorigenesis [78]. In this study, experi-
mental animals supplemented with 20% w/w crude palm
oil (among vegetable oils, palm oil is the richest natural
source of tocotrienols, with 600–1000 ppm concentration
corresponding to approximately 0.08% in weight), had a
lower incidence of mammary tumors compared to lard fat.
Moreover, it was subsequently demonstrated that the
protective effect disappears when the palm oil diet is
stripped of T3 [53].
Another study showed that supplementation with a

TRF from palm oil can delay the onset, incidence, and
size of the tumors in nude mice inoculated with MCF-7
breast cancer cells compared to non-supplemented
controls [51].
Further studies demonstrated that various T3 isomers

exert anticancer effects, which are not generally evident
with tocopherol-rich vitamin E preparations [43]. These
studies underlined the concept that T3 rather than
tocopherols are endowed of potent anticancer effects. In
particular, it has been found that T3 (but not
α-tocopherol) can suppress the growth of human breast
and colorectal cancer cells “in vitro” [14, 52] as well as
the responsiveness of human breast cancer cells to che-
motherapeutic drugs [19]. In mice, the administration of
T3 showed a life-prolonging effect from transplanted
tumors, which was not replicated by treatment with
tocopherol, [30].
Extensive “in vitro” and “in vivo” evidence has demon-

strated that δ- and γ-T3 are the most potent anticancer
forms of natural vitamin E [50].
Various antioxidant-independent mechanisms have

been proposed to explain the anticancer effect of T3,
and, among these, the main are represented by induction
of apoptosis, inhibition of cancer cells proliferation, in-
hibition of angiogenesis, and induction of cellular senes-
cence [38, 50, 86]. In various work focused on the
anticancer effect of α-, γ-, and δ-T3 “in vitro”, it has
been found that the anticancer action of T3 was related
to the induction of mitochondrial dysfunction and apop-
tosis as well as to the expression of cellular senescence
markers [61, 85].
In the HER-2/neu transgenic mouse model (a model

which spontaneously develop mammary tumors), dietary
supplementation with T3 (90% δ-T3 and 10% γ-T3)
delayed the development of tumors and reduced the
number and the volume of tumor masses and the size of
lung metastases [60]. The beneficial effects of T3 were
associated with a reduction of HER-2/neu mRNA and
p185HER-2/neu protein and an increase of markers re-
lated to cellular senescence in mammary glands while
no immune modulation was observed.
T3 have demonstrated their efficacy also in prostate can-

cer. Both γ- and δ-T3 were shown to inhibit the growth of
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androgen-dependent and androgen-independent prostate
cancer cells with a higher efficacy compared with tocoph-
erols [5]. The antiproliferative effect increased when T3
were administered to prostate cancer cells together with
docetaxel [93]. Moreover, a mixed-T3 diet supplemented to
a transgenic adenocarcinoma mouse prostate (TRAMP)
model induced a lower incidence of tumor formation along
with a significant reduction of the levels of high-grade neo-
plastic lesions as compared to untreated transgenic controls
[3]. This reduction was found to be associated with an in-
creased expression of proapoptotic proteins BAD (Bcl2
antagonist of cell death), cleaved caspase-3 and cell cycle
regulatory proteins including the cyclin-dependent kinase
inhibitors p21 and p27. More recently, using different
cell-based assays with non-small-cell lung cancer (NSCLC)
models, δ-T3 was found to inhibit cell proliferation, cell mi-
gration, invasion, aggregation, and adhesion with a mechan-
ism involving the increase of miR-451 expressions and the
downregulation of Notch-1-mediated nuclear factor-κB
(NF-κB) [70]. NF-κB is particularly relevant to chronic
inflammation and cancer. Many studies showed an
anti-tumorigenic and pro-survival role of NF-κB in cancer
cells, and recent findings suggest that NF-κB participates in
the production of SASP by senescent cells [24] which, in
turn, are suspected to promote cancer in old age [84]. Inter-
estingly, the suppression of NF-κB has been reported
among the effects of the senolytic drug ABT263 in bone
marrow stromal cells from old mice [29], thus suggesting
that also T3 may act trough targeting senescent cells.

Neurodegenerative Diseases
T3 have been shown to exert some kind of protection in
neurodegenerative diseases. In the pathogenesis of major
neurodegenerative diseases, oxidative damage may lead
to massive neuronal loss via glutamate toxicity. Studies
“in vitro” on HT4 hippocampal neuronal cells demon-
strate that nanomolar amounts of α-T3, but not
α-tocopherol, blocked glutamate-induced death by sup-
pressing glutamate-induced early activation of c-Src kin-
ase [73]. After oral administration, T3 have been shown
to cross the blood-brain barrier and to reach brain tis-
sue, thus suggesting that the results “in vitro” can be
transferred “in vivo”.
Indeed, chronic treatment with T3 prevented intra-

cerebroventricular streptozotocin-induced cognitive im-
pairment and oxidative-nitrosative stress in rats [81].
These protective effects of T3 have been attributed in

large part to their antioxidant effects, thus suggesting that
in these circumstances T3 and tocopherols may display
similar results. In agreement with this hypothesis, it has
been found that AD and MCI patients can display lower
serum levels of total tocopherols, total tocotrienols, and
total vitamin E compared with cognitively normal subjects
[42]. Moreover, elevated levels of tocopherol and T3 forms

were associated with reduced risk of cognitive impairment
in a Finnish cohort of 140 non-cognitively impaired eld-
erly subjects followed-up for 8 years [41]. However, even if
epidemiological studies have evidenced some benefits, the
effects of tocopherol and T3 in AD and other neurodegen-
erative diseases are still under debate. Besides the unam-
biguous positive effects of T3 in oxidative stress
reduction, studies in neuronal cell lines have shown that
T3 treatment may also increase amyloid-β (Aβ) levels as
well as the activity of enzymes responsible for Aβ produc-
tion [18]. When T3, in the form of TRF, were tested for
10months in the AD mouse model APPswe/PS1dE9 (60
mg/kg body weight, daily from 5 to 15months of age), the
treatment mitigated Aβ depositions in the cortex and
thioflavin-S-positive fibrillar type plaques in the hippo-
campus and improved cognitive function [22]. Paradoxic-
ally, these results were not associated with a reduction in
microglia activation and inflammation, likely due to insuf-
ficient dosing, suboptimal method of administration, low
bioavailability or late age of initiation. Conversely, in rats
postnatally exposed to ethanol, T3 treatment has been
shown to counteract all the behavioral, biochemical and
molecular alterations observed in different brain regions,
including the increase of neuroinflammatory mediators
(TNF-α, IL-1β, and TGF-β1) [80]. Unfortunately, there is
a lack of information about the effects of T3 on cell senes-
cence markers and Tau protein accumulation, which is
the most common pathology among neurodegenerative
diseases, including AD. A recent work performed in post-
mortem human brain tissues and animal models of AD
demonstrate that Tau protein aggregation is associated
with cellular senescence in the brain [48]. Additional stud-
ies addressing the effects of T3 on these pathological
markers would be useful to understand if T3 are able to
target senescent cells in neurodegenerative diseases.

Sarcopenia
Sarcopenia is a disease associated with the aging process
and is characterized by loss of muscle mass and strength
which in turn affects balance, gait and overall ability to
perform tasks of daily living. Both the number and re-
generative ability of satellite cells decline during aging
through apoptosis-induced cell death or cellular senes-
cence [13, 77]. The decline in the ability of satellite cells
to engage in the myogenic process contributes to
sarcopenia-induced muscle atrophy.
Some studies focused on the effect of TRF on replica-

tive senescence-associated oxidative stress and on the
regenerative capacity of myoblasts in stress-induced pre-
mature senescence (SIPS). These studies provide evi-
dence that TRF is able to ameliorate antioxidant defense
mechanisms and to improve replicative senescence-asso-
ciated oxidative stress in myoblasts [28], as well as to re-
cover the normal morphology of SIPS-induced
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myoblasts [34]. In this last model, TRF treatment also
reduced the activity of senescence-associated β-galacto-
sidase (SA-β-gal) and increased cell proliferation [34].
These results suggest that TRF may partly reverse myo-
blasts senescence and replenish the regenerative capacity
of these cells. An alternative interpretation of the results
that is based on the hypothesis that T3 may exert seno-
lytic activity has been also recently proposed [40]. Seno-
lytic activity has not been tested for T3 but part of
metabolic and apoptotic pathways affected by these
compounds in cancer cells overlap with those of quer-
cetin, which has been reported to display this activity in
irradiation-induced senescent endothelial cells [96]. This
suggests that the rejuvenating effects of T3 on senescent
cells might be the net results of a senolytic activity on
senescent cells and a selective survival of a
sub-population of non-senescent cells in the culture.
The promising results “in vitro” suggest that T3 with
their antioxidant and anti-inflammatory capabilities may
mitigate age-associated skeletal dysfunction and enhance
muscle regeneration, thus attenuating sarcopenia. How-
ever, “in vivo” studies with preclinical and clinical model
will be necessary to verify the potential of T3 for the
treatment of this age-related disease.

Inhibition of Cellular Senescence and
Inflammation as Main Mechanisms of Tocotrienol
Action in Age-Related Diseases
Anti-Inflammatory Properties of Tocotrienols
Growing evidence has indicated that T3 exhibit potent
anti-inflammatory activity. These effects have been
largely attributed to the inhibitory effect of T3 on the
proteasome. In fact, besides to be involved in protein
degradation for antigen processing, the proteasome rep-
resents a central regulator of the inflammation process
by controlling the production of inflammatory media-
tors. Several independent experimental models have sug-
gested that T3 block the activation of nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-kB),
a master regulator of the inflammatory response. In par-
ticular, T3 were found to reduce the activation of NF-kB
determined by tumor necrosis factor α (TNF-α),
interleukin-1 (IL-1) and phorbol ester. Treatment with
T3 has been reported to reduce lipopolysaccharide-in-
duced TNF-α in BALB/c mice, suggesting their potential
beneficial anti-inflammatory effects in atherosclerosis
[66]. In other studies, α-T3 was shown inhibit in a dose-
and time-dependent manner the surface expression of
vascular cell adhesion molecule-1 (VCAM1) in TNF-α
activated human umbilical vascular endothelial cells
(HUVEC) with the subsequent decrease in monocytic
cell adherence [56, 79]. In agreement with the majority
of studies on the anti-inflammatory activity of T3, these
results were mediated by an inhibition of NF-kB binding

activity [79]. A decrease of the expression of
inflammatory cytokines supported by the inhibition of
NF-kB expression was also observed in human mono-
cytic cells treated with palm oil-derived TRF [89]. T3
have been also shown to modulate the activity of the sig-
nal transducer and activator of transcription 3 (STAT3),
another transcription factor downstream of mTOR,
which has been associated with inflammation, prolifera-
tion, and tumorigenesis [11]. In particular, it has been
shown that γ-T3 inhibits both induced and constitutive
activation of STAT3 in cancer cell lines [54].
Another relevant aspect of T3 is their ability to sup-

press transforming growth factor β (TGF-β) signaling, a
cytokine characterized by a pleiotropic role in the
inflammatory processes. In fact, while the delivery of
TGF-β has proven beneficial in allograft rejection and
autoimmunity, TGF-β can also contribute to oxidative
stress and DNA damage during induction of cellular
senescence [31]. In particular, TGF-β is involved in the
induction of p21-dependent cellular senescence during
mammalian embryonic development [47] as well as in
experimental models of hepatocellular carcinoma [74]
and mesenchymal stromal cells [25]. Moreover, aging
imposes an elevation of TGF-β signaling in the neuro-
genic niche of the hippocampus and in the myogenic
niche of skeletal muscle [94]. This change induces a
switch in the activity of TGF-β, which became a pro-in-
flammatory factor instead of retaining its canonical role
in attenuating immune responses. The suppression of
TGF-β signaling with a single drug (an Alk5 Type I re-
ceptor kinase inhibitor) was found to simultaneously en-
hance neurogenesis and muscle regeneration in old
mice. Similarly, T3 have been reported to inhibit the ac-
tivity of TGF-β in human intestinal fibroblasts from
Crohn’s disease patients and healthy controls [35] as well
as the expression of TGF-β in the kidney of diabetic rats
[75] and the transduction of TGF signaling in human
prostate cancer cell lines [5]. Additional evidence of the
inhibitory effect of T3 on TGF-β signaling has been re-
ported in a rat model of spinal cord injury [91] and in
human airway smooth muscle cells [17]. Anyway, more
studies are needed to verify whether T3 may delay cellu-
lar senescence by targeting TGF-β signaling.

Modulation of Cellular Senescence by Tocotrienols
The changes in the biomarkers of aging promoted by
treatment with T3 and their marked anti-inflammatory ac-
tivity are likely the consequence of the multitarget ability
of these compounds. Anyway, most experimental condi-
tions in which T3 have been tested (atherosclerosis, AD,
metabolic disorders, frailty) are related to the deleterious
consequences of the excessive accumulation of senescent
cells. Unfortunately, whereas a multitude of studies have
been addressed to investigate the mechanism of action of
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T3, poor attention has been given to the potential of these
compounds to modulate cellular senescence [39]. In con-
trast to the pro-senescence activity displayed in cancer
cells, there is substantial evidence that T3 may act as sen-
escence delayers in normal cells by targeting ROS and
molecular pathways related to the promotion of replicative
senescence. Moreover, there is substantial evidence that
T3 may target the pathways upstream of SASP production
(mTOR and NF-kB), and it has been hypothesized that
that they may eventually promote the selective death of
senescent cells in particular experimental settings [40].
Incubation of human senescent fibroblasts at vari-

ous passages with a T3 rich extract was shown to
reverse the senescent morphology, to decrease the ac-
tivity of SA-β-gal as well as the amount of damaged
DNA and cells in G0/G1 phase, and to increase telo-
mere length and the number of cells in the S phase
[36]. Given that overexpression of the telomerase
reverse transcriptase (TERT) do not revert the senes-
cent phenotype in human fibroblasts [4], it is likely
that restoration of telomerase activity is not involved
in the reversal of the senescent status shown by T3.
Similarly, TRF was found to reduce SA-β-gal, to
ameliorate antioxidant defence mechanisms and to in-
crease cell proliferation of myoblasts in stress-induced
premature senescence [27, 28]. In another study, re-
searchers found that T3 can prevent cellular senes-
cence of human diploid fibroblasts by modulating a
multitude of senescence-associated microRNAs (SA
-miRNAs) and their target genes involved in cell cycle
arrest during cellular senescence [26].
There are at least three major mechanisms that

can contribute to explain the effects of T3 on senes-
cent cells:

1) The elimination of the excess of ROS or other
triggers of cellular senescence.

Senescent cells have been reported to produce an
excess of ROS which can be suppressed by antioxi-
dants with a partial reversion of the senescent pheno-
type [23]. Moreover, ROS are a well-established trigger
of cellular senescence and may accelerate the onset of
replicative senescence “in vitro” [58]. Considering that
T3 have a high antioxidant potential and that they are
able to modulate the Nrf2 mediated antioxidant re-
sponse, the modulation of the redox status of the cells
could explain both the delay of onset and the reversal
of the senescent phenotype observed “in vitro” after
T3 treatment. Accumulating evidence also suggests
that T3 can inhibit the activity of TGF-β [5, 35, 75]
that is another trigger of cellular senescence [31] and
may contribute to exhaustion of stem cells in neuro-
genic and myogenic niche [94].

The alteration of splicing factor expression is another
mechanism by which T3 could delay or reverse the sen-
escence phenotype. It has been recently demonstrated
that small molecules (such as resveratrol analogues) are
able to modulate the expression of splicing factors with
a subsequent rescue of multiple aspects related to cellu-
lar senescence including increased telomere length,
re-entry into the cell cycle and restarted proliferation
[33]. In this context, it has been reported that T3 are
capable to correct aberrant splicing of IkappaB kinase
complex-associated protein (IKAP) in cells derived from
patients with familial dysautonomia [2] and to modulate
the expression of a specific set of miRNAs in HeLa cells
involved in the alternative splicing of pro-apoptotic pro-
teins, such as the X-box binding protein 1 (XBP-1) [10].
Hence, alteration of splicing factor levels may be an
additional mechanism by which T3 can reverse cellular
senescence.

2) Inhibition of pathways that are responsible for
SASP production.

The SASP can disrupt tissues and contribute to
age-related pathologies, including cancer. The path-
ways that promote SASP production in senescent cells
have been investigated during these last years. Previ-
ous studies showed that the SASP is regulated by a
number of factors, including the transcription factor
NF-κB and the MAP kinase p38 [16], and more re-
cently it has been established that the activity of the
mammalian target of rapamycin (mTOR) is upstream
of these signals in senescent cells. mTOR promotes
the transcription of cytokine-encoding genes via IL1A
translation [32] and stabilizes their mRNAs via
MK2-mediated phosphorylation [21]. In agreement
with these observations, treatment with Rapamycin
(an inhibitor of mTOR) is able to suppress the SASP
in various model of senescent cells. In analogy with
the effects of Rapamycin, a mixture of naturally oc-
curring T3 and tocopherols extracted from palm oil/
palm fruits as well as purified γ-T3 has been reported
to negatively modulate mTOR pathways in breast
cancer cells [57, 83]. Moreover, T3 have been re-
ported to suppress the activation of NF-kB in several
experimental models (see previous chapter focused on
T3 and inflammation) [66, 79, 89].
Overall, these observations form a strong rationale

to support the idea that the positive effects of T3 in
age-related conditions may be the consequence of
their effects on senescent cells including the suppres-
sion of the SASP and its negative impact on cells and
tissues function.

3) Selection of “healthy cells” by senolysis.
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Selective cell death of non-proliferating senescent cells
(also termed senolysis) can be responsible for a decrease in
the percentage of senescent cells and a relative increase of
healthy proliferating cells, thus resembling a rejuvenating
effect. This could offer an additional explanation of the ef-
fects observed “in vitro” after T3 treatment of senescent
cells. Senolytic activity of T3 has not been directly tested,
but there is indirect evidence that T3 may exert this activity
by affecting proteostasis and promoting endoplasmic
reticulum-related apoptosis in senescent cells characterized
by a strong SASP response. [40]. Moreover, γ-T3 have been
shown to suppress aerobic glycolysis [57] which may be a
key survival factor in some senescent cells [12].
All the above-mentioned properties of T3 that may

interfere with senescent cells function and accumulation
are schematically depicted in Fig. 1.

Concluding Remarks
T3 have been reported to display a multitude of positive
effects on the prevention and treatment of age-related
pathologies. These include the amelioration of the lipid
profile, the promotion of Nrf2 mediated cytoprotective
activity and the suppression of inflammation.
All these effects may be the consequence of the ability

of T3 to target multiple pathways. We here propose that
these effects may be the result of a single target of T3.
This target is the SASP produced by senescent cells.

Indeed, T3 may act by a direct suppression of the SASP,
mediated by inhibition of NF-kB and mTOR, or by
removing the origin of the SASP trough senolysis. As a
consequence, many age-related pathologies connected
with the SASP may be attenuated or prevented by T3
treatment.
A separate case is represented by the action of T3 at the

level of cancer transformation and growth. In fact, the
anti-cancer effect of T3 can be exerted through at least
two different mechanisms. On one hand, the inhibitory ef-
fect of T3 on SASP-related inflammation may decrease
the potential risk created by a tissue microenvironment
that is permissive for the development of cancer. On the
other hand, T3 can directly induce cellular senescence
and/or apoptosis on cancer cells, thereby inhibiting the
growth and diffusion of cancer.
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Fig. 1 Tocotrienols have been shown to display beneficial effects in a multitude of age-related conditions related to the accumulation of
senescent cells. It has been shown in vitro that tocotrienols may act as senescence delayers (1 – black arrows) by reducing the amount of ROS
which, in turn, are a direct trigger of senescence or contribute to replicative and DNA-damage induced senescence. Tocotrienols may additionally
inhibit the pathways that drive the production of the SASP (2 – brown arrows) by targeting mTOR and NF-kB. Finally, it has been hypothesized
that tocotrienols may promote selective death of senescent cells (senolysis) (3 – red arrows) by increasing endoplasmic reticulum stress or
suppressing glycolysis or by other mechanisms that still deserve to be investigated
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