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Abstract

DNA/RNA methylation plays an important role in lung cancer initiation and progression. Liquid biopsy makes use
of cells, nucleotides and proteins released from tumor cells into body fluids to help with cancer diagnosis and
prognosis. Methylation of circulating tumor DNA (ctDNA) has gained increasing attention as biomarkers for lung
cancer. Here we briefly introduce the biological basis and detection method of ctDNA methylation, and review
various applications of methylated DNA in body fluids in lung cancer screening, diagnosis, prognosis, monitoring
and treatment prediction. We also discuss the emerging role of RNA methylation as biomarkers for cancer.
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Background
Lung Cancer is the second most common malignant
tumor and the leading cause of cancer deaths worldwide
[1]. Smoking tobacco is the primary risk factor for lung
cancer [1, 2]. Early detection and surgery offer the best
chance for survival. Screening using low-dose computed
tomography (LDCT) has been proved to improve early
detection and reduce mortality [3]. However, LDCT is
far from satisfactory as a screen tool due to its low spe-
cificity [4]. And 30% of patients with as early as stage I
lung cancer experience relapse after surgery and recom-
mended adjuvant chemotherapy [5], and for advanced
and metastatic disease that is inoperable, patients have
to receive radiotherapy, chemotherapy, targeted therapy
and immunotherapy and experience remission, recur-
rence and metastasis. Surveillance plan and treatment
decisions are conventionally made based on group statis-
tics and not precise or personalized. The overall 5 year
survival of lung cancer is only 17.7% [6]. Therefore, ef-
fective biomarkers for early detection, diagnosis, progno-
sis and monitoring of lung cancer are in urgent need.
Lung cancer is characterized by diverse genetic alter-

ations, making the development of reliable and feasible
DNA-based biomarkers very challenging. Epigenetic
changes, referred to changes in gene regulation that are

not attributed to changes in DNA sequence [7], are rela-
tively consistent in carcinogenesis. Epigenetic abnormal-
ities, comprising alterations in DNA/RNA methylation,
histone modifications, nucleosome positioning and non-
coding RNAs, are considered hallmarks of cancer initi-
ation and progression [8]. Recent advances in the field of
lung cancer epigenetics have revealed promising bio-
markers, particularly involving ctDNA methylation and
an emerging role of RNA methylation.

DNA Hypermethylation and Hypomethylation in
Lung Cancer
Hypermethylation
DNA methylation occurs at carbon-5 position of cyto-
sine within CpG dinucleotides that scattered in human
genome. The vast majority of the genome contains few
CpGs, and most of them are methylated in normal cells.
In contrast, around 2% of the genome contains high
density of CpG in regions named CpG islands (CGIs) [9]
that locate in 50–60% of gene promoters and are often
unmethylated during normal development and in adult
cells [10]. Methylated CGIs is generally a repressive
mark of transcription initiation [11] that hinders the
binding of activating transcriptional factors to DNA se-
quences [12, 13] and recruits inhibitory proteins [14, 15].
The cancer genome is globally hypomethylated, except
for the dense methylation at CGIs that is associated
with the permanent repression of tumor suppressor
genes and other cancer-related genes, thus promotes
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cancer progression [11, 16]. In non-small cell lung cancer
(NSCLC), CGI hypermethylation is associated with diag-
nosis [17, 18], staging [19], cigarette smoking [20], histo-
logical subtype [19, 21, 22], molecular subtypes [23–25],
progression [26], prognosis [27–30], and used as a poten-
tial therapeutic target [31].

Hypomethylation
DNA hypomethylation (m5C residues replaced by
unmethylated C residues) is the initial epigenetic abnor-
mality recognized in human tumors but has been ignored
for a long time [32]. DNA methylation in repetitive se-
quences could be essential to maintain chromosomal in-
tegrity. Studies confirm that DNA hypomethylation is the
most constant companion to hypermethylation of the gen-
ome in cancer [33–35], lung cancer included [36]. DNA
hypomethylation in repetitive sequence occurred in early
stage of squamous cell lung cancer [33], and individuals
with hypomethylation in repetitive element are at a high
risk of developing and dying from cancer [34]. Therefore,
hypomethylation could be used as a screening, diagnosis
and prognosis biomarker.

Circulating Tumor DNA (ctDNA) Methylation
Biological Basis of ctDNA
Circulating cell-free DNA (cfDNA) is a mixture of single
or double-stranded DNA in circulation released from dif-
ferent tissues including tumor. Since it is difficult to separ-
ate ctDNA from cfDNA originated from non-cancer
tissues, careful selection of control group and target genes
in a clinical trial is critical. As a result of nuclease digestion
during the release processes, cfDNA are usually short frag-
ments with generally very low concentration [37, 38]. In
cancer patients, level of cfDNA is elevated with ctDNA as
a substantial fraction ranging from < 0.05 [39] to 90% [40],
depending on tumor volume, localization, vascularization,
hepatic and renal clearance [41]. ctDNA mostly results
from apoptosis and necrosis of primary and metastatic
tumor [40]. Recent studies have also reported other
sources of ctDNA, such as circulating tumor cells (CTCs)
[42, 43], and exosomes released by tumor cells [44]. The
concordant epigenetic alterations between ctDNA and
corresponding tumor tissue DNA [45–48] make ctDNA
methylation a promising biomarker for cancer diagnosis
and prognosis. Other sources of methylated DNA from li-
quid biopsy have also been reported, such as cell-surface-
bound circulating DNA (csbDNA) [49, 50], Buffy coat
DNA [51], peripheral lymphocyte DNA [52, 53], peripheral
leukocyte DNA [54, 55], sputum [56] and exhaled breath
condensate (EBC) [57].

ctDNA Extraction Method
cfDNA can be isolated from both plasma and serum.
Although cfDNA from serum has been reported with

higher quantity [58], its separation process is more de-
manding to prevent DNA released from the lysis of
blood cells [37]. Anyway, it is essential to prepare DNA
using very fresh serum/plasma. Therefore, it is highly
recommended to process blood sample and separate
DNA as soon as possible (within 4 h for serum and 8 h
for plasma) [38]. The volume of blood sample necessary
to obtain sufficient cfDNA depends on the downstream
analysis method. Classical DNA purification methods
used for tissues are not suitable for ctDNA [59], and lots
of extraction kits designed for cfDNA have become
available [59–61].

ctDNA Methylation Detection Method
Detection of ctDNA methylation has evolved from a
few candidate genes to thousands of CpG sites, and
recently to whole genome methylation analysis. Detec-
tion method of ctDNA methylation can be divided
into three groups according to basic principles: sodium bi-
sulfite conversion-dependent methods, restriction enzyme-
dependent methods and affinity enrichment-dependent
methods.

Bisulfite Conversion-Dependent Methods
Sodium bisulfite conversion is the most widely used
method to distinguish unmethylated cytosines from
methylated ones, and can be coupled with various down-
stream detection technologies, for example, microarrays,
next-generation sequencing (NGS), PCR-based assays,
pyrosequencing, quantitative methylation-specific poly-
merase chain reaction (qMSP) and whole-genome shot-
gun bisulfite sequencing (WGSBS). Sodium bisulfite
rapidly deaminates unmethylated cytosines to uracils,
whereas methylated cytosines are only slowly converted
[62]. However, bisulfite treatment can induce random
DNA breaks, resulting in short single-stranded DNA
fragments, especially for cfDNA that is sparse and highly
fragmented. Several bisulfite conversion kits with im-
proved recovery of cfDNA have become commercially
available, mainly through reducing the incubation time
of DNA with bisulfite conversion reagent [63, 64]. Bisul-
fite treatment also induces reduction in sequence com-
plexity, and cannot distinguish 5-methylcytosines from
5-hydroxymethylcitosines [65], both resulting in com-
promising efficiency.

Restriction Enzyme-Dependent Methods
Restriction enzyme-dependent method utilizes methylation-
sensitive restriction enzymes (MSREs) that solely cut
unmethylated DNA, so that the rate of false-positives
due to incomplete DNA digestion can be prevented.
MSREs can be coupled with some downstream detec-
tion technologies, for example, differential methylation
hybridization (DMH), MCA with microarray hybridization
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(MCAM), HpaII tiny fragment enrichment by ligation-
mediated PCR (HELP), combined bisulfite restriction
analysis (COBRA) and methylation-specific multiplex
ligation-dependent probe amplification (MS-MLPA).
The disadvantage of this method is only a particular
pattern of CpG sites can be analyzed.

Affinity Enrichment-Dependent Methods
Affinity enrichment-dependent methods utilize specific
antibodies interacted with methylated cytosine or
methyl-binding proteins to enrich methylated DNA, be-
fore further examination with whole-genome analysis by
array-based hybridization or next generation sequencing
as well as gene-specific determination by PCR. Examples
include MethylCpG Binding Domain MBD2 proteins
(MBD, also termed Methyl Cap), methylated DNA im-
munoprecipitation (MeDIP) and methylated CpG island
recovery assay (MIRA) [66]. Low recovery rate of meth-
ylated DNA is the main disadvantage [67–69].

Smoking and Lung-Cancer-Related DNA Methylation
from Liquid Biopsy
Various factors associated with lung cancer have been
shown to alter epigenome that is lung-cancer related, for
example aging, chronic inflammation and cigarette
smoking [70, 71]. Russo AL et al. report hypermethyla-
tion at ECAD, p16, MGMT and DAPK from peripheral
lymphocytes DNA as smoking specific epigenome alter-
nation [53]. Baglietto L et al. identified 6 CpGs hypome-
thylation in 5 genes (AHRR, F2RL3, 2q37.1, 6p21.33 and
12q14.1) from peripheral blood related to smoking that
may raise lung cancer risk, and 5 of them were lowest
for current smokers and increased with time since quit-
ting for former smokers. Methylation at these 6 CpGs
can help improving prediction of lung cancer risk [72].
Gao X et al. demonstrated the impact of tobacco smok-
ing on DNA methylation at 8 lung-cancer-related genes
(KLF6, STK32A, TERT, MSH5, ACTA2, GATA3, VTI1A
and CHRNA5). DNA hypomethylation in 11 loci was
linked to current smokers, compared with never
smokers and 10 of them showed significant associations
with life-time cumulative smoking [73]. Interestingly, a
study from Davis A et al. does not support the associ-
ation between global blood DNA methylation and the
risk of lung cancer in non-smoking women [74], and
supports the association between smoking, DNA methy-
lation and lung cancer from opposite side. These studies
demonstrate the role of smoking in promoting lung
cancer through DNA methylation.

Methylated DNA from Liquid Biopsy as
Biomarkers for Lung Cancer
Tumor-specific methylation of ctDNA are promising
biomarkers to help screening, diagnosis, prognosis,

monitoring and prediction of therapy response. Due to
relatively low efficiency of single biomarker, it is more
common to use combination of ctDNA methylations to
improve sensitivity and specificity. Some researchers ex-
plored the potential role of DNA methylation as a target
for lung cancer treatment. Methylated DNA can also be
acquired from csbDNA [49, 50], buffy coat DNA [51],
and blood cell [75] including lymphocyte [52, 53] and
leukocyte [54, 55]. DNA methylations from EBC [57]
and sputum [56] are also reported to be associated with
lung cancer diagnosis and prognosis.

Screening and Diagnosis
Methylation occurs at early stage of carcinogenesis, and
has become an attractive biomarker for cancer screening
and early detection, especially for ctDNA methylation
with its convenience and non-invasion. Many studies
have reported the potential of ctDNA methylations for
the screening and diagnosis of lung cancer. Various gene
promoter methylations (Table 1) and their combinations
(Table 2) were found to be effective in discriminating
lung cancer patients from non-cancer controls. Biomarkers
mostly investigated include SHOX2 [46, 47, 76, 77],
RASSF1A [54, 75, 78–80], RARB2 [50, 78], LINE-1
[49, 51], P16 [54, 57, 81–83], MGMT [53, 79, 81],
DAPK [53, 56, 81], APC [47, 79, 84] and DLEC1 [47, 85].
For example, Powrózek T et al. evaluated DCLK1 methy-
lation status in DNA isolated from peripheral blood
plasma from 65 lung cancer patients and 95 healthy indi-
viduals. DCLK1 promoter methylation was detected in 32
lung cancer patients (49.2%) and 8 healthy individuals
(8.4%). The methylation of the region before transcription
start site (TSS) and the region after TSS of DCLK1 gene
was detected in 28 and 11 patients, respectively. In seven
cases (10.8%), the DCLK1 promoter methylation in both
regions was reported. The methylation was observed
slightly frequent in patients with small cell lung cancer
[17]. Weiss G et al. examined 330 plasma specimens in
three independent case–control studies, resulting in a
panel of SHOX2 and PTGER4 to distinguish lung cancer
from control (area under the receiver operating character-
istic curve = 91–98%). A validation study with 172 patient
samples demonstrated good performance in distinguishing
LC patients from subjects without malignancy (area under
the curve = 0.88) [77].
A large proportion of results mentioned above are

based on studies comparing advanced lung cancer with
healthy control. To avoid bias and improve the screening
and early diagnosis efficiency, studies should include
specifically early stage LC and non-cancer control.

Monitoring and Prognosis
DNA methylation can be used to indicate risk of can-
cer recurrence due to residual disease after surgery/
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chemotherapy. Due to its short half-life, ctDNA can
reflect tumor burden sensitively and allows ‘real-time’
monitoring of tumor dynamics. Persistence of ctDNA
in blood after surgery is associated with poor prognosis
[39]. In early stage like stage Ib NSCLC, benefit from adju-
vant chemotherapy is controversial, and ctDNA methyla-
tion might be used as a prognostic biomarker to define
patients at high risk of recurrence who may benefit from
chemotherapy. In patients with high probability of recur-
rence after surgery, monitoring with ctDNA methylation
can be a good surrogate to image and tumor markers, and

improve clinical outcome with early detection of recur-
rence [45, 86]. Ponomaryova AA et al. investigated the
methylation status in plasma of 32 healthy donors and 60
lung cancer patients before and after treatment, and found
that chemotherapy and total tumor resection resulted in a
significant decrease in the index of methylation for
RARB2 and RASSF1A, and methylation of RARB2 de-
tected within follow-up period manifested disease relapse
at 9 months [78]. Schmidt B et al. demonstrated better
survival in patients with low SHOX2 promotor methyla-
tion 1 week after the start of chemotherapy [87]. In

Table 1 Single DNA methylation from liquid biopsy as Biomarkers for lung cancer diagnosis

DNA methylation Body fluid Method Number
of cases

Number of
controls

Sensitivity (%)/specificity
(%) or main findings

References

SHOX2 plasma qMSP 222 189 60/90 [76]

plasma qMSP 38 31 80.65/78.57 [46]

DCLK1 plasma qMSP 65 95 49.2/91.6 [17]

SEPT9 plasma qMSP 75 100 44.3/92.3 [106]

IEAA blood HM450K 43 1986 one unit increase in IEAA was
associated with 50% higher risk
for LC

[107]

RARβ2 plasma MSP 52 26 63/51 [50]

csbDNA MSP 52 26 70/63 [50]

DLEC1 plasma MSP 78 50 36/98 [85]

CDH1 serum qMSP 76 30 62/70 [79]

DCC serum qMSP 76 30 35.5/100 [79]

CDH13 plasma MSP 63 36 33/83 [108]

P16 serum MSP 22 0 14% [81]

plasma F-MSP 35 15 40/100 [82]

plasma modified semi-nested MSP 105 0 73% [83]

Plasma F-MSP 30 30 50% [57]

EBC F-MSP 30 30 40% [57]

DAPK serum MSP 22 0 18% [81]

serum NA 50 0 40% [80]

GSTP1 serum MSP 22 0 5% [81]

MGMT serum MSP 22 0 18% [81]

TMS1 serum NA 50 0 34% [80]

RASSFS1A serum NA 50 0 34% [80]

blood cell NA NA NA positive with LC diagnosis. [75]

APC Serum/plasma MSP 89 50 47% [84]

LINE-1 csbDNA MIRA 56 44 AUC0.69 [49]

Buffy coat DNA PCR pyrosequencing 34 360 Hypomethylation is associated
with 3.2-fold higher risk for LC

[51]

p53 peripheral lymphocyte DNA HpaII quantitative PCR 100 - Hypomethylation was associated
with a 2-fold increased risk for LC

[52]

qMSP quantitative methylation-specific PCR, F-MSP fluorescent methylation-specific PCR, HM450K HumanMethylation450K BeadChip Assay, MSPmethylation-specific
PCR, MIRA methylated CpG island recovery assay, LC lung cancer, SHOX2 short stature homebox 2, DCLK1 doublecortin like kinase 1, SEPT9 septin9, IEAA intrinsic
epigenetic age acceleration, RARβ2 retinoic acid receptor B2, DLEC1 Deleted in lung and esophageal cancer 1, CDH1 cadherin 1, DCC DCC netrin 1 receptor, CDH13 cadherin
13, DAPK death-associated protein kinase, GSTP1 glutathione S-transferase P1, MGMT O6 - methylguanine-DNA-methyltransferase, RASSF1A ras association domain
family 1 isoform A, APC adenomatous polyposis coli, p16 cyclin-dependent kinase inhibitor 2A, csbDNA cell-surface-bound circulating DNA, EBC exhaled breath
condensate, NA not available

Lu et al. Biological Procedures Online  (2017) 19:2 Page 4 of 9



Table 2 Combination of DNA methylation from liquid biopsy as Biomarkers for lung cancer diagnosis

DNA methylation combination Body fluid Method Number
of cases

Number of
controls

Sensitivity%/specificity%
or main findings

References

RASSF1A/RARB2 Plasma/csbDNA qMSP 60 32 87/75 [78]

SHOX2/PTGER4 plasma Rt-PCR 117 122 67/90 or 90/73 [77]

RTEL1/PCDHGB6 cfDNA qMSP-PCR 70 80 62.9/90 (AUC0.755) [17]

HOXD10/PAX9/PTPRN2/STAG3 serum MSRE/qPCR 23 23 87.8/90.2 [109]

APC/RASSF1A/CDH13/KLK1/DLEC1 plasma MSP 110 50 83/70 [47]

APC/AIM1/CDH1/DCC/MGMT/
RASSF1A

serum qMSP 76 30 84/57 [79]

DAPK/PAX5b/PAX5a/Dal1/GATA5/
SULF2/CXCL14

sputum MSP 40 90 75/68 [56]

MGMT/DAPK/PAX5β/Dal-1/PCDH20/
Jph3/Kif1a

64 64

CSF3R/ERCC1 peripheral
leukocyte

pyrosequencing 138 138 Predict higher risk for
SCLC

[55]

CDH1/p16/MGMT/DAPK peripheral
lymphocyte

MSP 49 22 methylation of CDH1 and
DAPK occurs in the early
stages LC

[53]

methylation of p16 and
MGMT occurs in later
stages LC

p16/RASSF1A/FHIT/RTL WBC DNA SYBR Green-based qMSP
and qPCR

200 200 AUC 0.670–0.810 [54]

qMSP quantitative methylation-specific PCR, Rt-PCR real-time PCR, MSRE Methylation-Sensitive Restriction Enzymes, qPCR quantitative PCR, csbDNA cell-surface-
bound circulating DNA, LC lung cancer, SCLC small cell lung cancer, RASSF1A ras association domain family 1 isoform A, RARβ2 retinoic acid receptor B2, SHOX2
short stature homebox 2, PTGER4 prostaglandin E receptor 4, RTEL1 regulator of telomere elongation helicase 1, PCDHGB6 protocadherin gamma subfamily B, 6,
HOXD10 homeobox D10, PAX9 paired box 9, PTPRN2 protein tyrosine phosphatase receptor type N2, STAG3 stromal antigen 3, APC adenomatous polyposis coli,
DLEC1 Deleted in lung and esophageal cancer 1, CDH13 cadherin 13, KLK1 kallikrein 1, AIM1 absent in melanoma 1, CDH1 cadherin 1, DCC DCC netrin 1 receptor,
MGMT O6 - methylguanine-DNA-methyltransferase, DAPK death-associated protein kinase, PAX5b paired box 5b, PAX5a paired box 5a, GATA5 GATA binding protein
5, SULF2 sulfatase 2, CXCL14 C-X-C motif chemokine ligand 14, PCDH20 protocadherin 20, Jph3 junctophilin 3, CSF3R colony stimulating factor 3 receptor, ERCC1
ERCC excision repair 1, FHIT fragile histidine triad, RTL relative telomere length, p16 cyclin-dependent kinase inhibitor 2A

Table 3 Methylation of DNA from liquid biopsy as biomarkers for lung cancer prognosis and prediction

DNA methylation Body fluid Method Number
of cases

Number of
controls

Main findings References

SHOX2 plasma qMSP 36 - negative impact on survival [87]

RARB2/RASSF1A plasma qMSP 26 - Reduced after neoadjuvant chemotherapy
and surgery;

[78]

RARB2 plasma qMSP 26 - increased before recurrence [78]

RASSF1A/APC plasma qMSP 316 - Elevated after chemotherapy; correlated with
good response to cisplatin

[89]

DCLK1 plasma qMSP 65 95 negative impact on survival [17]

BRMS1 plasma qMSP 122 24 negative impact on survival [86]

SOX17 plasma qMSP 122 24 negative impact on survival [45]

SFN serum qMSP 115 - positive impact on survival with platinum-based
chemotherapy

[88]

CHFR serum qMSP 366 - negative impact on survival with second-line
EGFR-TKIs, compared to chemotherapy

[90]

smoCpGs Whole
blood

HM450K 60 1505 predict LC mortality (HR7.82) [110]

APC/RASSF1A/CDH13/
CDKN2A

Plasma MSP 45 - negative impact on PFS and OS [31]

qMSP quantitative methylation-specific PCR, HM450K HumanMethylation450K BeadChip Assay, LC lung cancer, PFS progression free survival, OS overall survival,
SHOX2 short stature homebox 2, RARβ2 retinoic acid receptor B2, RASSF1A ras association domain family 1 isoform A, APC adenomatous polyposis coli, DCLK1 doublecortin
like kinase 1, BRMS1 breast cancer metastasis suppressor-1, SOX17 (sex determining region Y)-box 17, SFN stratifin, CHFR checkpoint with forkhead and ring finger domains,
smoCpGs smoking-associated CpGs, caCpGs Lung cancer-related CpGs, CDH13 cadherin 13, CDKN2A cyclin dependent kinase inhibitor 2A
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advanced and metastatic lung cancer, some biomarkers
are associated with disease progression and survival, in-
cluding BRMS1 [86], SOX17 [45], DCLK1 [17], and SFN
(14-3-3 Sigma) promoter methylation [88] (Table 3).

Prediction of Therapy Response
ctDNA provides an potential detection of early response
to treatment, compared with conventional imaging or
protein based biomarkers. Several studies have reported
the use of tumor-specific methylation to track patient’s
response to therapy (Table 3). For example, Wang H et
al. reported an elevated level of APC and RASSF1A pro-
moter methylation in ctDNA within 24 h after cisplatin-
based therapy, consistent with chemotherapy induced
cell death [89]. The value of methylated ctDNA to pre-
dict response to therapy has also been investigated. For
example, Salazar F et al. reported that patients with
unmethylated CHFR promoter survived longer when re-
ceiving EGFR tyrosine kinase inhibitors as second-line
treatment, compared to conventional chemotherapy [90].

Target for Therapy
With the significance of DNA methylation in cancer
progression, epigenetic treatment became a potential
therapeutic candidate. Effect of epigenetic therapy in
lung cancer has been reported. Juergens RA et al. inves-
tigated combined epigenetic therapy with azacitidine and
entinostat, inhibitors of DNA methylation and histone
deacetylation respectively, in patients with recurrent
metastatic NSCLC, and with demethylation of a set of 4
epigenetically silenced genes known to be associated
with lung cancer in serial blood samples, resulted in ob-
jective and durable responses [31]. Further investigations
of methylated ctDNA as a treatment target are expected.

Emerging Role of RNA Methylation
RNA methylation was first described as a form of
post-transcriptional modification more than 40 years
ago [91, 92]. But the exact mechanism and significance of
methylated RNA is just beginning to be appreciated.
Among more than a hundred types of nucleotide modifi-
cations identified in different RNA molecules [93, 94],
m6A modification has attracted most attention owing to
its potential to regulate gene expression reversibly. RNA
with m6A modification does not activate TLR3 [95, 96],
leading to non-recognition of viral components, and
may stimulate a pathway involved in cancer develop-
ment [96–98]. RNA methylation may alter miRNA ex-
pression and mediate cancer cell migration [99]. RNA
methylation may be involved in cancer stem cells speci-
fication and disease progression [100]. The application
of circulating RNA methylation in various types of cancer
has been reported. For example, Muraoka T et al. proved
that serum miR-34b/c methylation can be used for the

diagnosis and prognosis of malignant pleural mesotheli-
oma [101]. Drugs that induced RNA demethylation might
contribute to patient responses [102, 103]. Lian CG et al.
reported another type of modification in RNA, 5-
hydroxymethyl cytosine (5hmC), as a signature for melan-
oma prognosis [104]. Further research on circulating RNA
methylation in lung cancer is anticipated.

Conclusions and Perspectives
Lung cancer liquid biopsy has received increasing attention
in recent years with its advantage as a non-invasive detec-
tion. Among the huge amount of information obtained
from liquid biopsy, epigenetic alterations, especially DNA/
RNA methylation, has been widely researched. ctDNA/
RNA methylation has been associated with the screening,
diagnosis, prognosis, monitoring and treatment prediction
of lung cancer. The advances in techniques enable detec-
tion of methylation from sparse and fragmented DNA/
RNA. For example, it is now feasible to detect DNA/RNA
methylation from single CTC [105]. However, the method-
ology is still in lack of standardization, which hinders the
development of methylation studies in every aspect. It is
urgent to establish standardized protocols from sample
storage, ctDNA/RNA extraction to methylation analysis.
Translating circulating epigenetic biomarkers from clinical
study to clinical routine for lung cancer is expected.
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