Skip to main content
  • Published:

Analysis of among-site variation in substitution patterns

Abstract

Substitution patterns among nucleotides are often assumed to be constant in phylogenetic analyses. Although variation in the average rate of substitution among sites is commonly accounted for, variation in the relative rates of specific types of substitution is not. Here, we review details of methodologies used for detecting and analyzing differences in substitution processes among predefined groups of sites. We describe how such analyses can be performed using existing phylogenetic tools, and discuss how new phylogenetic analysis tools we have recently developed can be used to provide more detailed and sensitive analyses, including study of the evolution of mutation and substitution processes. As an example we consider the mitochondrial genome, for which two types of transition deaminations (CT and AG) are strongly affected by single-strandedness during replication, resulting in a strand asymmetric mutation process. Since time spent single-stranded varies along the mitochondrial genome, their differential mutational response results in very different substitution patterns in different regions of the genome.

References

  1. Yang Z. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J Mol Evol 1994; 39:306–314.

    Article  PubMed  CAS  Google Scholar 

  2. Yang Z. Estimating the pattern of nucleotide substitution. J Mol Evol 1994; 39:105–111

    PubMed  Google Scholar 

  3. Bielawski JP, Gold JR. Mutation patterns of mitochondrial H- and L-strand DNA in closely related Cyprinid fishes. Genetics 2002; 161:1589–1597.

    PubMed  CAS  Google Scholar 

  4. Faith JJ, Pollock DD. Likelihood analysis of asymmetrical mutation bias gradients in vertebrate mitochondrial genomes. Genetics 2003; 165:735–745.

    PubMed  CAS  Google Scholar 

  5. Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001; 17:754–755.

    Article  PubMed  CAS  Google Scholar 

  6. Sullivan J, Holsinger KE, Simon C. The effect of topology on estimates of among-site rate variation. J Mol Evol 1996;42:308–312.

    Article  PubMed  CAS  Google Scholar 

  7. Yang Z, Goldman N, Friday A. Comparison of models for nucleotide substitution used in maximum-likelihood phylogenetic estimation. Mol Biol Evol 1994; 11:316–324.

    PubMed  CAS  Google Scholar 

  8. Rice JA. Mathematical statistics and data analysis. Duxbury Press, Belmont, California, 1995.

    Google Scholar 

  9. Pollock DD, Taylor WR, Goldman N. Coevolving protein residues: maximum likelihood identification and relationship to structure. J Mol Biol 1999; 287:187–198

    Article  PubMed  CAS  Google Scholar 

  10. Akaike H. Information theory as an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds). Second international symposium on information theory. Akademiai Kiado, Budapest, 1973.

    Google Scholar 

  11. Burnham KP, Anderson DR. Model selection and multimodel inference: a practical information-theoretic approach. Springer-Verlag, New York, 2002.

    Google Scholar 

  12. Reyes A, Gissi C, Pesole G, Saccone C. Asymmetrical directional mutation pressure in the mitochondrial genome of mammals. Mol Biol Evol 1998; 15:957–966.

    PubMed  CAS  Google Scholar 

  13. Tanaka M, Ozawa T. Strand asymmetry in human mitochondrial DNA mutations. Genomics 1994; 22:327–335.

    Article  PubMed  CAS  Google Scholar 

  14. Francino MP, Ochman H. Strand asymmetries in DNA evolution. Trends Genet 1997; 13:240–245.

    Article  PubMed  CAS  Google Scholar 

  15. Frederico LA, Kunkel TA, Shaw BR. A sensitive genetic assay for the detection of cytosine deamination: determination of rate constants and the activation energy. Biochemistry 1990; 29:2532–2537.

    Article  PubMed  CAS  Google Scholar 

  16. Frederico LA, Kunkel TA, Shaw BR. Cytosine deamination in mismatched base pairs. Biochemistry 1993; 32:6523–6530.

    Article  PubMed  CAS  Google Scholar 

  17. Krishnan NM, Seligmann H, Raina SZ, Pollock DD. Detecting gradients of asymmetry in site-specific substitutions in mitochondrial genomes. DNA and Cell Biology 2004; In press.

  18. Krishnan NM, Seligmann H, Stewart C-B, de Koning APJ, Pollock DD. Ancestral sequence reconstruction in primate mitochondrial DNA: compositional bias and effect on functional inference. Mol Biol Evol 2004; In press.

  19. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22:4673–4680.

    Article  PubMed  CAS  Google Scholar 

  20. Swofford DL. Phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, Sunderland, Massachusetts, 2000.

    Google Scholar 

  21. Lanave C, Preparata G, Saccone C, Serio G. A new method for calculating evolutionary substitution rates. J Mol Evol 1984; 20:86–93.

    Article  PubMed  CAS  Google Scholar 

  22. Hasegawa M, Kishino H, Yano T. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 1985; 22:160–174.

    Article  PubMed  CAS  Google Scholar 

  23. Yang Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 1997; 13:555- 556.

    PubMed  CAS  Google Scholar 

  24. Nielsen R. Mapping mutations on phylogenies. Syst Biol 2002; 51:729–739.

    Article  PubMed  Google Scholar 

  25. Pedersen AM, Jensen JL. A dependent-rates model and an MCMC-based methodology for the maximum-likelihood analysis of sequences with overlapping reading frames. Mol Biol Evol 2001; 18:763–776.

    PubMed  CAS  Google Scholar 

  26. Robinson DM, Jones DT, Kishino H, Goldman N, Thorne JL. Protein evolution with dependence among codons due to tertiary structure. Mol Biol Evol 2003; 20:1692–1704.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David D. Pollock.

Additional information

Published: September 2, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishnan, N.M., Raina, S.Z. & Pollock, D.D. Analysis of among-site variation in substitution patterns. Biol. Proced. Online 6, 180–188 (2004). https://doi.org/10.1251/bpo88

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1251/bpo88

Indexing terms