Skip to main content

Dynamic force microscopy for imaging of viruses under physiological conditions

Abstract

Dynamic force microscopy (DFM) allows imaging of the structure and the assessment of the function of biological specimens in their physiological environment. In DFM, the cantilever is oscillated at a given frequency and touches the sample only at the end of its downward movement. Accordingly, the problem of lateral forces displacing or even destroying bio-molecules is virtually inexistent as the contact time and friction forces are reduced. Here, we describe the use of DFM in studies of human rhinovirus serotype 2 (HRV2) weakly adhering to mica surfaces. The capsid of HRV2 was reproducibly imaged without any displacement of the virus. Release of the genomic RNA from the virions was initiated by exposure to low pH buffer and snapshots of the extrusion process were obtained. In the following, the technical details of previous DFM investigations of HRV2 are summarized.

References

  1. Binnig G, Quate CF, Gerber C. Atomic force microscope. Physical Review Letters 1986; 56:930–933.

    Article  PubMed  Google Scholar 

  2. Horber JK, Miles MJ. Scanning probe evolution in biology. Science 2003; 302:1002–1005.

    Article  PubMed  CAS  Google Scholar 

  3. Engel A, Muller DJ. Observing single biomolecules at work with the atomic force microscope. Nat Struct Biol 2000; 7:715–718.

    Article  PubMed  CAS  Google Scholar 

  4. Radmacher M. Measuring the elastic properties of living cells by the atomic force microscope. Methods Cell Biol 2002; 68:67–90.

    Article  PubMed  Google Scholar 

  5. Viani MB, Pietrasanta LI, Thompson JB, Chand A, Gebeshuber IC, Kindt JH, Richter M, Hansma HG, Hansma PK. Probing protein-protein interactions in real time. Nat Struct Biol 2000; 7:644–647.

    Article  PubMed  CAS  Google Scholar 

  6. Hinterdorfer P. Molecular Recognition Studies Using the Atomic Force Microscope. Methods Cell Biol 2002; 68:115–139.

    Article  PubMed  CAS  Google Scholar 

  7. Hoh JH, Sosinsky GE, Revel JP, Hansma PK. Structure of the extracellular surface of the gap junction by atomic force microscopy. Biophys J 1993; 65:149–163.

    Article  PubMed  CAS  Google Scholar 

  8. Muller DJ, Schabert FA, Buldt G, Engel A. Imaging purple membranes in aqueous solutions at sub-nanometer resolution by atomic force microscopy. Biophys J 1995; 68:1681–1686.

    Article  PubMed  CAS  Google Scholar 

  9. Karrasch S, Dolder M, Schabert F, Ramsden J, Engel A. Covalent binding of biological samples to solid supports for scanning probe microscopy in buffer solution. Biophys J 1993; 65:2437–2446.

    Article  PubMed  CAS  Google Scholar 

  10. Putman CAJ, Vanderwerf KO, de Grooth BG, Vanhulst NF, Greve J. Tapping mode atomic force microscopy in liquid. Appl Phys Lett 1994; 64:2454–2456.

    Article  CAS  Google Scholar 

  11. Han W, Lindsay SM, Jing T. A magnetically driven oscillating probe microscope for operation in liquid. Appl. Phys. Lett. 1996; 69:1–3.

    Article  Google Scholar 

  12. Han W, Lindsay SM, Dlakic M, Harrington RE. Kinked DNA. Nature 1997; 386:563.

    Article  PubMed  CAS  Google Scholar 

  13. Kienberger F, Stroh C, Kada G, Moser R, Baumgartner W, Pastushenko V, Rankl C, Schmidt U, Muller H, Orlova E, LeGrimellec C, Drenckhahn D, Blaas D, Hinterdorfer P. Dynamic force microscopy imaging of native membranes. Ultramicroscopy 2003; 97:229–237.

    Article  PubMed  CAS  Google Scholar 

  14. Humphris ADL, Tamayo J, Miles MJ. Active Quality Factor Control in Liquids for Force Spectroscopy. Langmuir 2000; 16:7891–7894.

    Article  CAS  Google Scholar 

  15. Schindler H, Badt D, Hinterdorfer P, Kienberger F, Raab A, Wielert-Badt S, Pastushenko V. Optimal sensitivity for molecular recognition MAC-mode AFM. Ultramicroscopy 2000; 82:227–235.

    Article  PubMed  CAS  Google Scholar 

  16. Lantz M, Liu YZ, Cui XD, Tokumoto H, Lindsay SM. Dynamic force microscopy in fluids. Interface Anal 1999; 27:354–360.

    Article  CAS  Google Scholar 

  17. Kienberger F, Muller H, Pastushenko V, Hinterdorfer P. Following Single Antibody Binding to Purple Membranes in Real Time. EMBO Rep 2004; 5:579–583.

    Article  PubMed  CAS  Google Scholar 

  18. Rossmann MG, Arnold E, Erickson JW, Frankenberger EA, Griffith JP, Hecht HJ, Johnson JE, Kamer G, Luo M, Mosser AG et al. Structure of a human common cold virus and functional relationship to other picornaviruses. Nature 1985; 317:145–153.

    Article  PubMed  CAS  Google Scholar 

  19. Staunton DE, Merluzzi VJ, Rothlein R, Barton R, Marlin SD, Springer TA. A cell adhesion molecule, ICAM-1, is the major surface receptor for rhinoviruses. Cell 1989; 56:849–853.

    Article  PubMed  CAS  Google Scholar 

  20. Hofer F, Gruenberger M, Kowalski H, Machat H, Huettinger M, Kuechler E, Blass D. Members of the low density lipoprotein receptor family mediate cell entry of a minor-group common cold virus. Proc Natl Acad Sci USA 1994; 91:1839–1842.

    Article  PubMed  CAS  Google Scholar 

  21. Prchla E, Kuechler E, Blaas D, Fuchs R. Uncoating of human rhinovirus serotype 2 from late endosomes. J Virol 1994; 68:3713–3723.

    PubMed  CAS  Google Scholar 

  22. Hewat EA, Neumann E, Blaas D. The concerted conformational changes during human rhinovirus 2 uncoating. Mol Cell 2002; 10:317–326.

    Article  PubMed  CAS  Google Scholar 

  23. McGregor S, Mayor HD. Internal components released from rhinovirus and poliovirus by heat. J Gen Virol 1971; 10:203–207.

    Article  PubMed  CAS  Google Scholar 

  24. Kienberger F, Moser R, Schindler H, Blaas D, Hinterdorfer P. Quasi-crystalline arrangement of human rhinovirus 2 on model membranes. Single Mol 2001; 2:99–103.

    Article  CAS  Google Scholar 

  25. Kienberger F, Zhu R, Moser R, Blaas D, Hinterdorfer P. Monitoring RNA release from human rhinovirus by dynamic force microscopy. J Virol 2004; 78:3203–3209.

    Article  PubMed  CAS  Google Scholar 

  26. Muller DJ, Amrein M, Engel A. Adsorption of biological molecules to a solid support for scanning probe microscopy. J Struct Biol 1997; 119:172–188.

    Article  PubMed  CAS  Google Scholar 

  27. Hewat EA, Neumann E, Conway JF, Moser R, Ronacher B, Marlovits TC, Blaas D. The cellular receptor to human rhinovirus 2 binds around the 5-fold axis and not in the canyon: a structural view. Embo J 2000; 19:6317–6325.

    Article  PubMed  CAS  Google Scholar 

  28. Pastushenko V, Hinterdorfer P, Kienberger F, Borken C, Schindler H. Effects of Viscoelastic Cantilever-Sample Interaction on Laser Beam Deflection in MACmode MRFM. Single Mol 2000; 2:165–170.

    Article  Google Scholar 

  29. Rankl C, Pastushenko V, Kienberger F, Stroh C, Hinterdorfer P. Hydrodynamic damping of a magnetically oscillated cantilever close to a surface. Ultramicroscopy 2004; in press.

  30. Verdaguer N, Blaas D, Fita I. Structure of human rhinovirus serotype 2 (HRV2). J Mol Biol 2000; 300:1179–1194.

    Article  PubMed  CAS  Google Scholar 

  31. Hewat EA, Blaas D. Structure of a neutralizing antibody bound bivalently to human rhinovirus 2. Embo J 1996; 15:1515–1523.

    PubMed  CAS  Google Scholar 

  32. Stemmer A, Engel A. Imaging biological macromolecules by STM: quantitative interpretation of topographs. Ultramicroscopy 1990; 34:129–140.

    Article  PubMed  CAS  Google Scholar 

  33. Hansma HG, Revenko I, Kim K, Laney DE. Atomic force microscopy of long and short double-stranded, single-stranded and triple-stranded nucleic acids. Nucleic Acids Res 1996; 24:713–720.

    Article  PubMed  CAS  Google Scholar 

  34. Drygin YF, Bordunova OA, Gallyamov MO, Yaminsky IV. Atomic force microscopy examination of tobacco mosaic virus and virion RNA. FEBS Lett 1998; 425:217–221.

    Article  PubMed  CAS  Google Scholar 

  35. Fay MJ, Walter NG, Burke JM. Imaging of single hairpin ribozymes in solution by atomic force microscopy. Rna 2001; 7:887–895.

    Article  PubMed  CAS  Google Scholar 

  36. Neumann E, Moser R, Snyers L, Blaas D, Hewat EA. A cellular receptor of human rhinovirus type 2, the very-low-density lipoprotein receptor, binds to two neighboring proteins of the viral capsid. J Virol 2003; 77:8504–8511.

    Article  PubMed  CAS  Google Scholar 

  37. Blake K, O’Connell S. Virus Culture. In: Harper, DR, editor. Virology Labfax. West Smithfield, London: Blackwell Scientific Publications; 1993. p. 81–122.

    Google Scholar 

  38. Okun VM, Ronacher B, Blaas D, Kenndler E. Analysis of common cold virus (human rhinovirus serotype 2) by capillary zone electrophoresis: The problem of peak identification. Analytical Chemistry 1999; 71:2028–2032.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Hinterdorfer.

Additional information

Published: June 29, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kienberger, F., Zhu, R., Moser, R. et al. Dynamic force microscopy for imaging of viruses under physiological conditions. Biol. Proced. Online 6, 120–128 (2004). https://doi.org/10.1251/bpo80

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1251/bpo80

Indexing terms