Skip to main content
  • Published:

Expression and purification of recombinant vesicular glutamate transporter VGLUT1 using PC12 cells and High Five insect cells

Abstract

In synaptic vesicles, the estimated concentration of the excitatory amino acid glutamate is 100–150 mM. It was recently discovered that VGLUT1, previously characterized as an inorganic phosphate transporter (BNPI) with 9–11 predicted transmembrane spanning domains, is capable of transporting glutamate. The expression and His-tag based purification of recombinant VGLUT1 from PC12 cells and High Five insect cells is described. Significantly better virus and protein expression was obtained using High Five rather than Sf9 insect cells. PC12 cell expressed VGLUT1 is functional but not the Baculovirus expressed protein. The lack of functionality of the Baculovirus expressed VGLUT1 is discussed. The data indicate that VGLUT1 readily oligomerizes/dimerizes. The data are discussed in the context of developing this system further in order to reconstitute vesicular glutamate uptake in vitro using lipid-detergent vesicles.

References

  1. Murthy VN, De Camilli P. Cell biology of the presynaptic terminal. Annu Rev Neurosci 2003; 26:701–728.

    Article  PubMed  CAS  Google Scholar 

  2. Burger PM, Mehl E, Cameron PL, Maycox PR, Baumert M, Lottspeich F, De Camilli P, Jahn R. Synaptic vesicles immunoisolated from rat cerebral cortex contain high levels of glutamate. Neuron 1989; 3:715–720.

    Article  PubMed  CAS  Google Scholar 

  3. Stevens CF. Neurotransmitter release at central synapses. Neuron 2003; 40:381–388.

    Article  PubMed  CAS  Google Scholar 

  4. Williams J. How does a vesicle know it is full? Neuron 1997; 18:683–686.

    Article  PubMed  CAS  Google Scholar 

  5. Johnson RG Jr. Accumulation of biological amines into chromaffin granules: a model for hormone and neurotransmitter transport. Physiol Rev 1988; 68:232–307.

    PubMed  CAS  Google Scholar 

  6. Wolosker H, de Souza DO, de Meis L. Regulation of glutamate transport into synaptic vesicles by chloride and proton gradient. J Biol Chem 1996; 271:11726–11731.

    Article  PubMed  CAS  Google Scholar 

  7. Maycox PR, Deckwerth T, Jahn R. Bacteriorhodopsin drives the glutamate transporter of synaptic vesicles after co-reconstitution. EMBO J 1990; 9:1465–1469.

    PubMed  CAS  Google Scholar 

  8. Bellocchio EE, Hu H, Pohorille A, Chan J, Pickel VM, Edwards RH. The localization of the brain-specific inorganic phosphate transporter suggests a specific presynaptic role in glutamatergic transmission. J Neurosci 1998; 18: 8648–8659.

    PubMed  CAS  Google Scholar 

  9. Bellocchio EE, Reimer RJ, Fremeau RT Jr., Edwards RH. Uptake of glutamate into synaptic vesicles by an inorganic phosphate transporter. Science 2000; 289:957–960.

    Article  PubMed  CAS  Google Scholar 

  10. Reimer RJ, Fremeau RT Jr., Bellocchio EE, Edwards RH. The essence of excitation. Curr Opin Cell Biol 2001; 13:417–421.

    Article  PubMed  CAS  Google Scholar 

  11. Tate CG, Blakely RD. The effect of N-linked glycosylation on activity of the Na(+)- and Cl(−)-dependent serotonin transporter expressed using recombinant baculovirus in insect cells. J Biol Chem 1994; 269:26303–26310.

    PubMed  CAS  Google Scholar 

  12. Tate CG. Baculovirus-mediated expression of neurotransmitter transporters. Methods Enzymol 1998; 296:443–455.

    Article  PubMed  CAS  Google Scholar 

  13. Sievert MK, Thiriot DS, Edwards RH, Ruoho AE. High-efficiency expression and characterization of the synaptic-vesicle monoamine transporter from baculovirus-infected insect cells. Biochem J 1998; 330:959–966.

    PubMed  CAS  Google Scholar 

  14. Lu ML, Huang YW, Lin SX. Purification, reconstitution, and steady-state kinetics of the trans-membrane 17 beta-hydroxysteroid dehydrogenase 2. J Biol Chem 2002; 277:22123–22130.

    Article  PubMed  CAS  Google Scholar 

  15. Klaassen CH, Bovee-Geurts PH, Decaluwe GL, DeGrip WJ. Large-scale production and purification of functional recombinant bovine rhodopsin with the use of the baculovirus expression system. Biochem J 1999; 342:293–300.

    Article  PubMed  CAS  Google Scholar 

  16. Tate CG, Haase J, Baker C, Boorsma M, Magnani F, Vallis Y, Williams DC. Comparison of seven different heterologous protein expression systems for the production of the serotonin transporter. Biochim Biophys Acta 2003; 1610:141–153.

    Article  PubMed  CAS  Google Scholar 

  17. Reed PW. Ionophores. Methods Enzymol 1979; 55:435–454.

    Article  PubMed  CAS  Google Scholar 

  18. Lewis SM, Ueda T. Solubilization and reconstitution of synaptic vesicle glutamate transport system. Methods Enzymol 1998; 296:125–144.

    Article  PubMed  CAS  Google Scholar 

  19. Maduke M, Pheasant DJ, Miller C. High-level expression, functional reconstitution, and quaternary structure of a prokaryotic ClC-type chloride channel. J Gen Physiol 1999; 114:713–722.

    Article  PubMed  CAS  Google Scholar 

  20. Nicholls DG, Sihra TS, Sanchez-Prieto J. Calcium-dependent and -independent release of glutamate from synaptosomes monitored by continuous fluorometry. J Neurochem 1987; 49:50–57.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Søren S. L. Andersen.

Additional information

Published: June 7, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersen, S.S.L. Expression and purification of recombinant vesicular glutamate transporter VGLUT1 using PC12 cells and High Five insect cells. Biol. Proced. Online 6, 105–112 (2004). https://doi.org/10.1251/bpo78

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1251/bpo78

Indexing terms