Skip to main content

Use of surface plasmon resonance for the measurement of low affinity binding interactions between HSP72 and measles virus nucleocapsid protein

Abstract

The 72 kDa heat shock protein (HSP72) is a molecular chaperone that binds native protein with low affinity. These interactions can alter function of the substrate, a property known as HSP-mediated activity control. In the present work, BIAcore instrumentation was used to monitor binding reactions between HSP72 and naturally occurring sequence variants of the measles virus (MV) nucleocapsid protein (N), a structural protein regulating transcription/replication of the viral genome. Binding reactions employed synthetic peptides mimicking a putative HSP72 binding motif of N. Sequences were identified that bound HSP72 with affinities comparable to well-characterized activity control reactions. These sequences, but not those binding with lesser affinity, supported HSP72 activity control of MV transcription/replication. BIAcore instrumentation thus provides an effective way to measure biologically relevant low affinity interactions with structural variants of viral proteins.

References

  1. 1.

    Gething MJ, Blond-Elguindi S, Buchner J, Fourie A, Knarr G, Modrow S, Nanu L, Segal M, Sambrook J. Binding site for Hsp70 molecular chaperones in natural proteins.Cold Spring Harbour Symposia on Quantitative Biology 1995; 60:417–428.

    CAS  Google Scholar 

  2. 2.

    Gamer J, Multhaup G, Tomoyasu T, McCarty JS, Rudiger S, Schonfeld HJ, Schirra C, Bujard H, Bukau B. A cycle of binding and release of the DnaK, DnaJ and GrpE chaperones regulates activity of the Escherichia coli heat shock transcription factor sigma32.EMBO J 1996; 15(3):607–617.

    PubMed  CAS  Google Scholar 

  3. 3.

    Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero Ausio J, Nissen MS, Reeves R, Kang C, Kissinger CR, Bailey RW, Griswold MD, Chiu W, Garner EC, Obradovic Z. Intrinsically disordered protein.J Mol Graph Model 2001; 19(1):26–59.

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Ellis RJ, Hartl FU. Protein folding in the cell: competing models of chaperonin function.FASEB J 1996; 10(1):20–26.

    PubMed  CAS  Google Scholar 

  5. 5.

    Georgopoulos C, Liberek K, Zylicz M, Ang D. Properties of the heat shock proteins of E. coli and the autoregulation of the heat shock response. In: Morimoto R, Tissieres A, and Georgopoulos C, (Eds.). The biology of the Heat Shock Proteins and Molecular Chaperones.Cold Spring Harbour Laboratory Press 1994; 209–250.

  6. 6.

    de Crouy-Chanel A, Kohiyama M, Richarme G. Interaction of DnaK with native proteins and membrane proteins correlates with their accessible hydrophobicity.Gene 1999; 230(2):163–170.

    PubMed  Article  Google Scholar 

  7. 7.

    Vasconcelos DY, Cai XH, Oglesbee MJ. Constitutive overexpression of the major inducible 70 kDa heat shock protein mediates large plaque formation by measles virus.J Gen Virol 1998; 79:2239–2247.

    PubMed  CAS  Google Scholar 

  8. 8.

    Andrews JM, Newbound GC, Oglesbee MJ, Brady JN, Lairmore MD. The cellular stress response enhances human T-cell lymphotropic virus type 1 basal gene expression through the core promoter region of the long terminal repeat.J Virol 1997; 71(1):741–745.

    PubMed  CAS  Google Scholar 

  9. 9.

    Alfano C, McMacken R. Heat shock protein-mediated disassembly of nucleoprotein structures is required for the initiation of bacteriophage lambda DNA replication.J Biol Chem 1989; 64(18):10709–10718.

    Google Scholar 

  10. 10.

    Oglesbee MJ, Kenney H, Kenney T, Krakowka S. Enhanced production of morbillivirus gene-specific RNAs following induction of the cellular stress response in stable persistent infection.Virol 1993; 192(2):556–567.

    Article  CAS  Google Scholar 

  11. 11.

    Oglesbee MJ, Liu Z, Kenney H, Brooks CL. The highly inducible member of the 70kDa family of heat shock proteins increases canine distemper virus polymerase activity.J Gen Virol 1996; 77:2125–2135.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Oglesbee MJ, Ringler S, Krakowka S. Interaction of canine distemper virus nucleocapsid variants with 70K heat shock protein.J Gen Virol 1990; 71:1585–1590.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Oglesbee MJ, Tatalick L, Rice J, Krakowka S. Isolation and characterization of canine distemper virus nucleocapsid variants.J Gen Virol 1989; 70:2409–2419.

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Oglesbee MJ, Krakowka S. Cellular stress response induces selective intranuclear trafficking and accumulation of morbillivirus major core protein.Lab Invest 1993; 68:109–117.

    PubMed  CAS  Google Scholar 

  15. 15.

    Zhang X, Glendening C, Linke H, Parks CL, Brooks C, Udem SA, Oglesbee M. Identification and characterization of a regulatory domain on the carboxyl terminus of the measles virus nucleocapsid protein.J Virol 2002; 76(17):8737–8746.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Blond-Elguindi S, Cwirla SE, Dower WJ, Lipshutz RJ, Sprang SR, Sambrook JF, Gething MJ. Affinity panning of a library of peptides displayed on bacteriophages reveals the binding specificity of BiP.Cell 1993; 75(4):717–728.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Longhi S, Receveur-Bréchot V, Karlin D, Johansson K, Darbon H, Bhella D, Yeo R, Finet S, Canard B. The C-terminal domain of the measles virus nucleoprotein is intrinsically disordered and folds upon binding to the C-terminal moiety of the phosphoprotein.J Biol Chem 2003; 278(20):18638–18648.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Rudiger S, Germeroth L, Schneider-Mergener J, Bukau B. Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries.EMBO J 1997; 16(7):1501–1507.

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Burkholder WF, Zhao X, Zhu X, Hendrickson WA, Gragerov A, Gottesman ME. Mutations in the C-terminal fragment of DnaK affecting peptide binding.Proc Natl Acad Sci USA 1996; 93(20):10632–10637.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Fourie AM, Hupp TR, Lane DP, Sang BC, Barbosa MS, Sambrook JF, Gething MJ. Hsp70 binding sites in the tumor suppressor protein P53.J Biol Chem 1997; 272(31):19471–19479.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Mannie MD, Paterson PY, U’Prichard DC, Flouret G. Induction of experimental allergic encephalomyelitis in Lewis rats with purified synthetic peptides: delineation of antigenic determinants for encephalitogenicity, in vitro activation of cellular transfer, and proliferation of lymphocytes.Proc Natl Acad Sci USA 1985; 82(16):5515–5519.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Mustafa MM, Weitman SD, Winick NJ, Bellini WJ, Timmons CF, Siegel JD. Subacute measles encephalitis in the young immunocompromised host: report of two cases diagnosed by polymerase chain reaction and treated with ribavirin and review of the literature.Clin Infect Dis 1993; 16(5):654–660.

    PubMed  CAS  Google Scholar 

  23. 23.

    Vasconcelos D, Norrby E, Oglesbee M. The cellular stress response increases measles virus-induced cytopathic effect.J Gen Virol 1998; 79:1769–1773.

    PubMed  CAS  Google Scholar 

  24. 24.

    Lund GA, Tyrrell DL, Bradley RD, Scraba DG. The molecular length of measles virus RNA and the structural organization of measles nucleocapsids.J Gen Virol 1984;65:1535–1542.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Oglesbee M, Tatalick L, Ringler S, Rice J, Krakowka J. Rapid isolation of morbillivirus nucleocapsid for genomic RNA cDNA cloning and the production of specific core protein antisera.J Virol Methods 1989; 24:285–300.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Giraudon P, Jacquier MF, Wild TF. Antigenic analysis of African measles virus field isolates: identification and localisation of one conserved and two variable epitope sites on the NP protein.Virus Res 1988; 10(2–3):137–152.

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Misselwitz B, Staeck O, Matlack KE, Rapoport TA. Interaction of BiP with the J-domain of the Sec63p component of the endoplasmic reticulum protein translocation complex.J Biol Chem 1999; 274(29):20110–20115.

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Bukau B, Horwich AL. The Hsp70 and Hsp60 chaperone machines.Cell 1998; 92(3):351–366.

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Fourie AM, Sambrook JF, Gething MJ. Common and divergent peptide binding specificities of hsp70 molecular chaperones.J Biol Chem 1994; 269(48):30470–30478.

    PubMed  CAS  Google Scholar 

  30. 30.

    Myszka DG. Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors.Curr Opin Biotechnol 1997; 8:50–57.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael Oglesbee.

Additional information

Published: September 5, 2003

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, X., Oglesbee, M. Use of surface plasmon resonance for the measurement of low affinity binding interactions between HSP72 and measles virus nucleocapsid protein. Biol. Proced. Online 5, 170–181 (2003). https://doi.org/10.1251/bpo59

Download citation

Indexing terms

  • Surface plasmon resonance technology
  • Measles virus