Skip to main content
  • Published:

Evaluation of intra- and interspecific divergence of satellite DNA sequences by nucleotide frequency calculation and pairwise sequence comparison

Abstract

Satellite DNA sequences are known to be highly variable and to have been subjected to concerted evolution that homogenizes member sequences within species. We have analyzed the mode of evolution of satellite DNA sequences in four fishes from the genusDiplodus by calculating the nucleotide frequency of the sequence array and the phylogenetic distances between member sequences. Calculation of nucleotide frequency and pairwise sequence comparison enabled us to characterize the divergence among member sequences in this satellite DNA family. The results suggest that the evolutionary rate of satellite DNA inD. bellottii is about two-fold greater than the average of the other three fishes, and that the sequence homogenization event occurred inD. puntazzo more recently than in the others. The procedures described here are effective to characterize mode of evolution of satellite DNA.

References

  1. Ugarkovic D, Plohl M. Variation in satellite DNA profiles – cause and effects.EMBO J 2002; 21:5955–5959.

    Article  PubMed  CAS  Google Scholar 

  2. Willard HF. Chromosome-specific organization of human alpha satellite DNA.Amer J Human Genet 1985 37:524–532.

    CAS  Google Scholar 

  3. Willard HF. Centromeres of mammalian chromosomes.Trends Genet 1990; 6:410–416.

    Article  PubMed  CAS  Google Scholar 

  4. Masumoto H, Masukata H, Muro Y, Nozaki N, Okazaki T. A human centromere antigen (CENP-B) interact with a short specific sequence in alphoid DNA, a human centromeric alphoid.J Cell Biol 1989; 109:1963–1973.

    Article  PubMed  CAS  Google Scholar 

  5. Zinkowski RP, Meyne J, Brinkley BR. The centromere-kinetochore complex: a repeat subunit model.J Cell Biol 1989; 113:1091–1110.

    Article  Google Scholar 

  6. Ikeno M, Masumoto H, Okazaki T. Distribution of CENP-B boxes reflected in CREST centromere antigenic sites on long-range α-satellite DNA arrays of human chromosome 21.Human Mol Genet 1994; 3:1245–1257.

    Article  CAS  Google Scholar 

  7. Laursen HB, Jørgensen AL, Jones C, Bak AL. Higher rate of evolution of X chromosome α-repeat DNA in human than in the great apes.EMBO J 1992; 11:2367–2372.

    PubMed  CAS  Google Scholar 

  8. Franck JPC, Kornfield I, Wright JM. The utility of SATA satellite DNA sequences for inferring phylogenetic relationships among the three major genera of Tilapiine Ciclid fishes.Mol Phylogenet Evol 1994; 3:10–16.

    Article  PubMed  CAS  Google Scholar 

  9. Garrido-Ramos MA, Jamilena M, Lozano R, Rejon CR, Rejon MR. The EcoRI centromeric satellite DNA of the Sparidae family (Pisces, Perciformes) contains a sequence motive common to other vertebrate centromeric satellite DNA.Cytogenet Cell Genet 1995; 71:345–351.

    Article  PubMed  CAS  Google Scholar 

  10. Garrido-Ramos MA, de la Herran R, Jamilena M, Lozano DNA and its use in phylogenetic studies of the Sparidae family (Pisces, Perciformes).Mol Phylogenet Evol 1999; 12: 200–204.

    Article  PubMed  CAS  Google Scholar 

  11. Kato M, Kato A, Shimizu N. A method for evaluating phylogenetic relationship of α-satellite DNA suprachromosomal family by nucleotide frequency calculation.Mol Phylogenet Evol 1999; 13:329–335.

    Article  PubMed  CAS  Google Scholar 

  12. Dover GA. Molecular drive in multigene families: how biological novelties arise, spread and are assimilated.Trends Genet 1986; 2:159–165.

    Article  CAS  Google Scholar 

  13. Kato M, Ozeki M, Kikuchi A, Kanbe T. Phylogenetic relationship and mode of evolution of yeast DNA topoisomerase II gene in the pathogenicCandida species.Gene 2001; 272:275–281.

    Article  PubMed  CAS  Google Scholar 

  14. Kato M. Structural bistability of repetitive DNA elements featuring CA/TG dinucleotide steps and mode of evolution of satellite DNA.Eur J Biochem 1999; 265: 204–209.

    Article  PubMed  CAS  Google Scholar 

  15. Warburton PE, Waye JS, Willard HF. Nonrandom localization of recombination events in human alpha satellite repeat unit variants: Implications for higher order structural characteristics within centromeric heterochromatin.Mol Cell Biol 1993; 13:6520–6529.

    PubMed  CAS  Google Scholar 

  16. Jukes TH, Cantor CR. Evolution of protein molecules. InMammalian Protein Metabolism (Munro, H. N. ed.), pp. 21–132. Academic Press, New York, 1969.

    Google Scholar 

  17. Nei M.Molecular Evolutionary Genetics. Columbia University Press, New York, 1987.

    Google Scholar 

  18. Felsenstein J. PHYLIP (Phylogeny Inference Package) version 3.5c, Distributed by the author, Department of Genetics, University of Washington, Seattle, 1993.

    Google Scholar 

  19. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences.J Mol Evol 1980; 16:111–120.

    Article  PubMed  CAS  Google Scholar 

  20. Elder JF, Jr Turner BJ. Concerted evolution at the population level: pupfish HindIII satellite DNA sequences.Proc Natl Acad Sci USA 1994; 91:994–998.

    Article  PubMed  CAS  Google Scholar 

  21. Charlesworth B, Sniegowski P, Stephan W. The evolutionary dynamics of repetitive DNA in eukaryotes.Nature 1994; 371:215–220.

    Article  PubMed  CAS  Google Scholar 

  22. Fitch WM, Margoliash E. Construction of phylogenetic trees.Science 1967; 155:279–284.

    Article  PubMed  CAS  Google Scholar 

  23. Page RDM. TreeView for Macintosh (PPC) version 1.5. Distributed by the author, Division of Environmental and Evolutionary Biology, IBLS, University of Glasgow, Glasgow, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikio Kato.

Additional information

Published: March 4, 2003

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kato, M. Evaluation of intra- and interspecific divergence of satellite DNA sequences by nucleotide frequency calculation and pairwise sequence comparison. Biol. Proced. Online 5, 63–68 (2003). https://doi.org/10.1251/bpo47

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1251/bpo47

Indexing terms