Skip to main content

Expression, purification and characterization of ricin vectors used for exogenous antigen delivery into the MHC class I presentation pathway


Disarmed versions of the cytotoxin ricin can deliver fused peptides into target cells leading to MHC class I-restricted antigen presentation [Smithet al. J Immunol 2002; 169:99–107]. The ricin delivery vector must contain an attenuated catalytic domain to prevent target cell death, and the fused peptide epitope must remain intact for delivery and functional loading to MHC class I molecules. Expression inE. coli and purification by cation exchange chromatography of the fusion protein is described. Before used for delivery, the activity of the vector must be characterizedin vitro, via anN-glycosidase assay, andin vivo, by a cytotoxicity assay. The presence of an intact epitope must be confirmed using mass spectrometry by comparing the actual mass with the predicted mass.



antigen presenting cells


endoplasmic reticulum


major histocompatibility complex




ricin toxin A chain


ricin toxin B chain


transport associated with antigen presentation


  1. Smith DC, Gallimore A, Jones E, Roberts B, Lord JM, Deeks D, Cerundolo V, Roberts LM. Exogenous peptides delivered by ricin require processing by signal peptidase for transporter associated with antigen processing-independent MHC Class I-restricted presentation.J Immunol. 2002;169:99–107.

    PubMed  CAS  Google Scholar 

  2. Noakes KL, Teisserenc HT, Lord JM, Dunbar PR, Cerundolo V, Roberts LM. Exploiting retrograde transport of Shiga-like toxin 1 for the delivery of exogenous antigens into the MHC class I presentation pathway.FEBS Lett. 1998;453:95–99.

    Article  Google Scholar 

  3. Haicheur N, Bismuth E, Bosset S, Adotevi O, Warnier G, Lacabanne V, Regnault A, Desaymard C, Amigorena S, Riccardi-Castagnoli P, Goud B, Fridman WH, Johannes L, Tartour E. The B-subunit of Shiga toxin fused to a tumor antigen elicits CTL and targets dendritic cells to allow MHC class I restricted presentation of peptides derived from exogenous antigens.J Immunol. 2000;165:3301–3308.

    PubMed  CAS  Google Scholar 

  4. Smith DC, Lord JM, Roberts LM, Tartour E, Johannes L. 1st Class Ticket to Class I: Protein Toxins as Pathfinders for Antigen Presentation.Traffic. 2002;3:695–702.

    Google Scholar 

  5. Sandvig K, Garred O, Prydz K, Kozlov J, Hansen SH, van Deurs B. Retrograde transport of endocytosed Shiga toxin to the endoplasmic reticulum.Nature. 1992;358:510–512.

    PubMed  Article  CAS  Google Scholar 

  6. Simpson JC, Dascher C, Roberts LM, Lord JM, Balch WE. Ricin cytotoxicity is sensitive to recycling between the endoplasmic reticulum and the Golgi complex.J Biol Chem. 1995;270:20078–20083.

    PubMed  Article  CAS  Google Scholar 

  7. Rapak A, Falsnes P, Olsnes S. Retrograde transport of mutant ricin to the endoplasmic reticulum with subsequent translocation to cytosol.Proc Natl Acad Sci USA. 1997;94:3783–3788.

    PubMed  Article  CAS  Google Scholar 

  8. Simpson JC, Smith DC, Roberts LM, Lord JM. Expression of mutant dynamin protects cells against diphtheria toxin but not against ricin.Exp Cell Res. 1998;239:293–300.

    PubMed  Article  CAS  Google Scholar 

  9. Simpson JC, Roberts LM, Römisch K, Davey J, Wolf HD, Lord JM. Ricin A chain utilises the endoplasmic reticulum-associated protein degradation pathway to enter the cytosol of yeast.FEBS Lett. 1999;459:80–84.

    PubMed  Article  CAS  Google Scholar 

  10. Deeks ED, Cook JP, Day PJ, Smith DC, Roberts LM, Lord JM. The low lysine content of ricin A chain reduces the risk of proteolytic degradation after translocation from the endoplasmic reticulum to the cytosol.Biochemistry. 2002;41:3405–3413.

    PubMed  Article  CAS  Google Scholar 

  11. Argent RH, Parrott AM, Day PJ, Roberts LM, Stockley PG, Lord JM, Radford SE. Ribosome-mediated folding of partially unfolded ricin A-chain.J Biol Chem. 2000;275:9263–9269.

    PubMed  Article  CAS  Google Scholar 

  12. Ready MP, Kim Y, Robertus JD. Site-directed mutagenesis of ricin A-chain and implications for the mechanism of action.Proteins. 1991;10:270–278.

    PubMed  Article  CAS  Google Scholar 

  13. Elliott T, Smith M, Driscoll P, McMicheal A. Peptide selection by class I molecules of the major histocompatibility complex.Curr Biol. 1993;3:854–859.

    PubMed  Article  CAS  Google Scholar 

  14. Day PJ, Ernst SR, Frankel AE, Monzingo AF, Pascal JM, Molina-Smith MC, Robertus JD. Structure and activity of an active site substitution of ricin A chain.Biochemistry. 1996;35:11098–11103.

    PubMed  Article  CAS  Google Scholar 

  15. Sandvig K, Prydz K, Hansen SH, van Deurs B. Ricin transport in brefeldin A-treated cells: correlation between Golgi structure and toxic effect.J Cell Biol. 1991;115:971–981.

    PubMed  Article  CAS  Google Scholar 

  16. Gagliardi MC, Sallusto F, Marinaro M, Langenkamp A, Lanzavecchia A, De Magistris MT. Cholera toxin induces maturation of human dendritic cells and licences them for Th2 priming.Eur J Immunol. 2000;30:2394–2403.

    PubMed  Article  CAS  Google Scholar 

  17. Ausiello CM, Fedele G, Urbani F, Lande R, Di Carlo B. Native and genetically inactivated pertussis toxins induce human dendritic cell maturation and synergize with lipopolysaccharide in promoting T helper type 1 responses.J Infect Disease. 2002;186:351–360.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Daniel C. Smith.

Additional information

Published: February 17, 2003

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Smith, D.C., Marsden, C.J., Lord, J.M. et al. Expression, purification and characterization of ricin vectors used for exogenous antigen delivery into the MHC class I presentation pathway. Biol. Proced. Online 5, 13–19 (2003).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI:


  • Delivery Vector
  • Biological Procedure
  • MC57 Cell
  • Biological Procedure Online
  • Ricin Toxin