Skip to main content

Experimental assessment of the role of acetaldehyde in alcoholic cardiomyopathy


Alcoholism is one of the major causes of non-ischemic heart damage. The myopathic state of the heart due to alcohol consumption, namely alcoholic cardiomyopathy, is manifested by cardiac hypertrophy, compromised ventricular contractility and cardiac output. Several mechanisms have been postulated for alcoholic cardiomyopathy including oxidative damage, accumulation of triglycerides, altered fatty acid extraction, decreased myofilament Ca2+ sensitivity, and impaired protein synthesis. Despite intensive efforts to unveil the mechanism and ultimate toxin responsible for alcohol-induced cardiac toxicity, neither has been clarified thus far. Primary candidates for the specific toxins are ethanol, its first and major metabolic product — acetaldehyde (ACA) and fatty acid ethyl esters. Evidence from our lab suggests that ACA directly impairs cardiac function and promotes lipid peroxidation resulting in oxidative damage. The ACA-induced cardiac contractile depression may be reconciled with inhibitors of Cytochrome P-450 oxidase, xanthine oxidase and lipid peroxidation Unfortunately, the common methods to investigate the toxicity of ACA have been hampered by the fact that direct intake of ACA is toxic and unsuitable for chronic study, which is unable to provide direct evidence of direct cardiac toxicity for ACA. In order to overcome this obstacle associated with the chemical properties of ACA, our laboratory has used the chronic ethanol feeding model in transgenic mice with cardiac over-expression of alcohol dehydrogenase (ADH) and anin vitro ventricular myocyte culture model. The combination of bothin vivo andin vitro approaches allows us to evaluate the role of ACA in ethanol-induced cardiac toxicity and certain cellular signaling pathways leading to alcoholic cardiomyopathy.


  1. 1.

    Fernandez-Sola J, Estruch R, Grau JM, Pare JC, Rubin E, Urbano-Marquez A. The relation of alcoholic myopathy to cardiomyopathy.Ann Intl Med 1994; 120:529–536.

    CAS  Google Scholar 

  2. 2.

    Patel VB, Why HJ, Richardson PJ, Preedy VR. The effects of alcohol on the heart.Adverse Drug React Toxicol Rev 1997; 16:15–43.

    PubMed  CAS  Google Scholar 

  3. 3.

    Richardson PJ, Patel VB, Preedy VR. Alcohol and the myocardium.Novartis Found Symp 1998; 216:35–45.

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Preedy VR, Patel VB, Reilly ME, Richardson PJ, Falkous G, Mantle D. Oxidants, antioxidants and alcohol: implications for skeletal and cardiac muscle.Front Biosci 1999; 4:e58–66.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Laposata EA, Lange LG. Presence of nonoxidative ethanol metabolism in human organs commonly damaged by ethanol abuse.Science 1986; 231:497–499.

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Espinet C, Argiles JM. Ethanol and acetaldehyde levels in rat blood and tissues after an acute ethanol administration.IRCS Med Sci 1984; 12:830–831.

    CAS  Google Scholar 

  7. 7.

    Ren J, Davidoff AJ, Brown RA. Acetaldehyde depresses shortening and intracellular Ca2+ transients in adult rat ventricular myocytes.Cell Mol Biol 1997; 43: 825–834.

    PubMed  CAS  Google Scholar 

  8. 8.

    Brown RA, Jefferson L, Sudan N, Lloyd LC, Ren J. Acetaldehyde depresses myocardial contraction and cardiac myocyte shortening in spontaneously hypertensive rats: Role of intracellular Ca2+.Cell Mol Biol 1999; 45:453–465.

    PubMed  CAS  Google Scholar 

  9. 9.

    Ren J, Wold LE, Epstein PN. Diabetes enhances acetaldehyde-induced depression of cardiac myocyte contraction.Biochem Biophys Res Comm 2000; 269:697–703.

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Ren J, Brown RA. Influence of chronic alcohol ingestion on acetaldehyde-induced depression of cardiac contractile function.Alcohol Alcoholism 2000; 35:554–560.

    Article  CAS  Google Scholar 

  11. 11.

    Leiber C, Barona E, Leo M, Garro A. Effect of chronic alcohol consumption on the metabolism of ethanol.Prog Clin Biochem Res 1987; 241:161–172.

    Google Scholar 

  12. 12.

    Yoshida A. Molecular genetics of human aldehyde dehydrogenase.Pharmacogenetics 1992; 2:139–147.

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Preedy VR, Richardson PJ. Ethanol induced cardiovascular disease.Br Med Bull 1994; 50:152–163.

    PubMed  CAS  Google Scholar 

  14. 14.

    Brown RA, Crawford M, Natavio M, Petrovski P, Ren J. Dietary magnesium supplementation attenuates ethanol-induced myocardial dysfunction.Alcohol Clin Exp Res 1998; 22:2062–2072.

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    De Carli LM, Leiber CS. Fatty liver in the rat after prolonged intake of ethanol with a nutritionally adequate new liquid diet.J Nutrit 1967; 91:331–336.

    Google Scholar 

  16. 16.

    Keane B, Leonard BE. Rodent models of alcoholism: a review.Alcohol and Alcohol 1989; 24:299–309.

    CAS  Google Scholar 

  17. 17.

    Edenberg HJ, Zhang K, Fong K, Bosron WF, Li TK. Cloning and sequencing of cDNA encoding the complete mouse liver alcohol dehydrogenase.Proc Natl Acad Sci USA 1985; 82:2262–2266.

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    Taketo M, Schroeder AC, Mobraaten LEet al. FVB/N: an inbred mouse strain preferable for transgenic analyses.Proc Natl Acad Sci USA 1991; 88:2065–2069.

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Overbeek PA, Aguilar-Cordova E, Hanten G. Coinjection strategy for visual identification of transgenic mice.Transgenic Res 1991; 1:31–37.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Liang Q, Carlson EC, Borgerding AJ, Epstein PN. A transgenic model of acetaldehyde overproduction accelerates alcohol cardiomyopathy.J Pharmacol Exp Ther 1999; 291:766–772.

    PubMed  CAS  Google Scholar 

  21. 21.

    Duan J, McFadden GE, Borgerding AJ, Norby FL, Ren BH, Ye G, Epstein PN, Ren J. Overexpression of alcohol dehydrogenase exacerbates ethanol-induced contractile defect in cardiac myocytes.Am J Physiol Heart Circ Physiol 2002; 282: H1216-H1222.

    PubMed  CAS  Google Scholar 

  22. 22.

    Ellingsen O, Davidoff AJ, Prasad SK, Berger HJ, Springhorn JP, Marsh JD, Kelly RA, Smith TW. Adult rat ventricular myocytes cultured in defined medium: phenotype and electromechanical function.Am J Physiol 1993; 265:H747-H754.

    PubMed  CAS  Google Scholar 

  23. 23.

    Aberle NS II Ren J. Acetaldehyde depresses cardiac contraction in ventricular myocytes: Role of cytochrome p-450 oxidase, xanthine oxidase and lipid peroxidation.Alcohol Clin Exp Res 2003, in press.

  24. 24.

    Ren J, Wold L. Measurement of cardiac mechanical function in isolated ventricular myocytes from rats and mice by computerized video-based imaging.Biol Proced Online 2001; 3:43–53.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Yao A, Su Z, Nonaka A, Zubair I, Lu L, Philipson KD, Bridge JHB, Barry WH. Effects of overexpression of the Na+-Ca2+ exchanger on [Ca2+]i transients in murine ventricular myocytes.Circ Res 1998; 82:657–665.

    PubMed  CAS  Google Scholar 

  26. 26.

    McCall E, Ginsburg KS, Bassani RA, Shannon TR, Qi M, Samarel AM, Bers DM. Ca flux, contractility and excitation-contraction coupling in hypertrophic rat ventricular myocytes.Am J Physiol 1998; 274:H1348-H1360.

    PubMed  CAS  Google Scholar 

  27. 27.

    Bers DM. Calcium fluxes involved in control of cardiac myocyte contraction.Circ Res 1996; 87:275–281.

    Google Scholar 

  28. 28.

    Ide T, Tsutsui H, Hayashidani S. Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts following myocardial infarction.Circ Res 2001; 88:529–535.

    PubMed  CAS  Google Scholar 

  29. 29.

    Picklo MJ, Amarnath V, McIntyre JO, Graham DG, Montine TJ. 4-Hydroxy-2(E)-nonenal inhibits CNS mitochondrial respiration at multiple sites.J Neurochem 1999; 72:1617–1624.

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Picklo MJ Sr., Montine TJ. Acrolein inhits respiration in isolated brain mitochondria.Biochim Biophys Acta 2001; 1535:145–152.

    PubMed  CAS  Google Scholar 

  31. 31.

    Griffith OW. Glutathione and glutathione disulfide In: Bergmeyer HU Bergmeyer J (eds) Methods of enzymatic analysis Vol 8, Verlag Chemie Deerfield Beach, FL. 1986; pp. 521–529.

    Google Scholar 

  32. 32.

    Ye G, Metreveli NS, Ren J, Epstein PN. Overexpression of metallothionein reverses diabetes induced functional deficits in diabetic cardiomyocytes by inhibiting ROS production.Diabetes 2003, in press.

  33. 33.

    Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal malonaldehyde and related aldehydes.Free Radic Biol Med 1991; 11: 81–128.

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Ren J, Roughead ZK, Norby FL, Rakoczy S, Wold LE, Mabey RL, Brown-Borg HM. Increases in insulin-like growth factor-1 level and peroxidative damage after gestational ethanol exposure in rats.Pharmacol Res 2003, in press.

  35. 35.

    Ohhira M, Ohtake T, Matsumoto A, Saito H, Ikuta K, Fujimoto Y, Ono M, Toyokuni S, Kohgo Y. Immunohistochemical detection of 4-hydroxy-2-nonenalmodified-protein adducts in human alcoholic liver diseases.Alcohol Clin Exp Res 1998; 22:145S-149S.

    PubMed  Article  CAS  Google Scholar 

  36. 36.

    Montine KS, Reich E, Neely MD, Sidell KR, Olson SJ, Markesbery WR, Montine TJ. Distribution of reducible 4-hydroxynonenal adduct immunoreactivity in Alzheimer disease is associated with APOE genotype.J Neuropathol Exp Neurol 1998; 57:415–425.

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Mantle D, Preedy VR. Free radicals as mediators of alcohol toxicity.Adverse Drug React Toxicol Rev 1999; 18:235–252.

    PubMed  CAS  Google Scholar 

  38. 38.

    Tanaka E, Terada M, Misawa S. Cytochrome P450 2E1: its clinical and toxicological role.J Clin Pharm Ther 2000; 25:165–175.

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Lieber CS. Alcoholic liver injury: pathogenesis and therapy in 2001.Pathol Biol (Paris) 2001; 49:738–752.

    CAS  Google Scholar 

  40. 40.

    Cederbaum AI, Wu D, Mari M, Bai J. CYP2E1-dependent toxicity and oxidative stress in HepG2 cells.Free Radic Biol Med 2001; 31:1539–1543.

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Thum T, Borlak J. Cytochrome P450 mono-oxygenase gene expression and protein activity in cultures of adult cardiomyocytes of the rat.Br J Pharmacol 2000; 130:1745–1752.

    PubMed  Article  CAS  Google Scholar 

  42. 42.

    Novak RF, Woodcroft KJ. The alcohol-inducible form of cytochrome P450 (CYP 2E1): role in toxicology and regulation of expression.Arch Pharm Res 2000; 23: 267–282.

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Hoek JB, Cahill A, Pastorino JG. Alcohol and mitochondria: A dysfunctional relationship.Gastroenterology 2002; 122:2049–2063.

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Sarkola T, Iles MR, Kohlenberg-Mueller K, Eriksson CJ. Ethanol acetaldehyde, acetate and lactate levels after alcohol intake in white men and women: effect of 4-methylpyrazole.Alcohol Clin Exp Res 2002; 26:239–245.

    PubMed  CAS  Google Scholar 

  45. 45.

    Petry NM. A behavioral economic analysis of polydrug abuse in alcoholics: asymmetrical substitution of alcohol and cocaine.Drug Alcohol Depend 2001; 62:31–39.

    PubMed  Article  CAS  Google Scholar 

  46. 46.

    Mehta MC, Jain AC, Billie M. Combined effects of alcohol and nicotine on cardiovascular performance in a canine model.J Cardiovasc Pharmacol 1998; 31:930–936.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Jun Ren.

Additional information

Published: February 17, 2003

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Aberle, N.S., Ren, J. Experimental assessment of the role of acetaldehyde in alcoholic cardiomyopathy. Biol. Proced. Online 5, 1–12 (2003).

Download citation

Indexing terms

  • Heart
  • Transgenic
  • Myocyte
  • Acetaldehyde (ACA)
  • Alcohol
  • Excitation-Contraction (E-C) coupling