Skip to main content
  • Published:

Aequorin-based measurements of intracellular Ca2+-signatures in plant cells

Abstract

Due to the involvement of calcium as a main second messenger in the plant signaling pathway, increasing interest has been focused on the calcium signatures supposed to be involved in the patterning of the specific response associated to a given stimulus. In order to follow these signatures we described here the practical approach to use the non-invasive method based on the aequorin technology. Besides reviewing the advantages and disadvantages of this method we report on results showing the usefulness of aequorin to study the calcium response to biotic (elicitors) and abiotic stimuli (osmotic shocks) in various compartments of plant cells such as cytosol and nucleus.

References

  1. Hepler PK, Wayne RO. Calcium and plant development. Ann Rev Plant Physiol 1985; 36:397–439.

    CAS  Google Scholar 

  2. Sanders D, Brownlee C, Harper JF. Communicating with Calcium. Plant Cell 1999; 11:691–706.

    Article  PubMed  CAS  Google Scholar 

  3. McAinsh MR, Hetherington AM. Encoding specificity in calcium signalling systemsTrends Plant Sci 1998; 3:32–36.

    Article  Google Scholar 

  4. Trewavas AJ, Malho R. Ca2+ signalling in plant cells: the big network! Curr. Opin. Plant Biol. 1998; 1:428–433.

    Article  PubMed  CAS  Google Scholar 

  5. Mithöfer A, Ebel J, Bhagwat AA, Boller T, Neuhaus-Url G. Transgenic aequorin monitors cytosolic calcium transients in soybean cells challenged with β-glucan or chitin elicitors. Planta 1999; 207:566–574.

    Article  Google Scholar 

  6. Blume B, Nürnberger T, Nass N, Scheel D. Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley. Plant Cell 2000; 12:1425–1440.

    Article  PubMed  CAS  Google Scholar 

  7. Allen GJ, Chu SP, Schumacher K, Shimazaki CT, Vafeados D, Kemper A, Hawke SD, Tallman G, Tsien RY, Harper JF, Chory J, Schroeder JI. Alteration of stimulus-specific oscillations and stomatal closing in Arabidopsis det 3 mutant. Science 2000; 289:2338–2342.

    Article  PubMed  CAS  Google Scholar 

  8. Allen GJ, Chu SP, Harrington CL, Schumacher K, Hooffmann T, Tang YY, Grill E, Schroeder JI. A defined range of guard cell calcium oscillation parameters encodes stomatal movements. Nature 2001; 411: 1053–1057.

    Article  PubMed  CAS  Google Scholar 

  9. Jaffe LF. Calcium explosions as trigger of development. Ann NY Acad Sci 1980; 339:86–101.

    Article  PubMed  CAS  Google Scholar 

  10. Felle H. Ca2+-selective microelectrodes and their application to plant cells and tissues. Plant Physiol 1989;91: 1239–1242.

    Article  PubMed  CAS  Google Scholar 

  11. Rudd JJ, Franklin-Tong VE. Unravelling response-specificity in Ca2+ signalling pathways in plant cells. New Phytol 2001; 151:7–33.

    Article  CAS  Google Scholar 

  12. Cobbold PH, Rink TJ. Fluorescence and bioluminescence measurements of cytoplasmic free calcium. Biochem J 1987; 248:313–328.

    PubMed  CAS  Google Scholar 

  13. Kendall J, Badminton MN. Aequorea victoria bioluminescence moves into an exciting new era. TIBTECH 1998; 16:216–224.

    CAS  Google Scholar 

  14. Pauly N, Knight MR, Thuleau P, Graziana A, Muto S, Ranjeva R, Mazars C. The nucleus together with the cytosol generates patterns of specific cellular calcium signatures in tobacco suspension culture cells. Cell Calcium 2001; 30:413–421.

    Article  PubMed  CAS  Google Scholar 

  15. Badminton MN, Kendall JM, Sala-Newby G, Campbell AK. Nucleoplasmin-targeted aequorin provides evidence for a nuclear calcium barrier. Exp Cell Res 1995; 216:236–243.

    Article  PubMed  CAS  Google Scholar 

  16. Takahashi K, Isobe M, Knight MR, Trewavas AJ, Muto S. Hypoosmotic shock induces increases in cytosolic Ca2+ in tobacco suspension-culture cells. Plant Physiol 1997; 113:587–594.

    PubMed  CAS  Google Scholar 

  17. Thion L, Mazars C, Thuleau P, Graziana A, Rossignol M, Moreau M, Ranjeva R. Activation of plasma membrane voltage-dependent calcium-permeable channels by disruption of microtubules in carrot cells. FEBS Lett 1996; 393:13–18.

    Article  PubMed  CAS  Google Scholar 

  18. Allen DG, Blinks JR, Prendergast FG. Aequorin luminescence: relation of light emission to calcium concentration — a calcium-independent component. Science 1977; 195:996–998.

    Article  PubMed  CAS  Google Scholar 

  19. van der Luit AH, Olivari C, Haley A, Knight MR, Trewavas AJ. Distinct calcium signaling pathways regulate calmodulin gene expression in tobacco. Plant Physiol 1999; 121:705–714.

    Article  Google Scholar 

  20. Moyen C, Hammond-Kosack JE, Jones J, Knight MR, Johannes E. Systemin triggers an increase of cytoplasmic calcium in tomato mesophyll cells: Ca2+ mobilization from intra- and extra-cellular compartments. Plant Cell Environ 1998; 21:1101–1111.

    Article  CAS  Google Scholar 

  21. Prasher D, McCann RO, Cormier MJ. Cloning and expression of the cDNA coding for aequorin, a bioluminescent calcium-binding protein. Biochem Biophys Res Commun 1985; 126:1259–1268.

    Article  PubMed  CAS  Google Scholar 

  22. Knight MR, Campbell AK, Smith SM, Trewavas AJ. Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature 1991; 352:524–526.

    Article  PubMed  CAS  Google Scholar 

  23. Ebel J, Mithöfer A. Early events in the elicitation of plant defence. Planta 1998; 206:335–348.

    Article  CAS  Google Scholar 

  24. Knight H, Trewavas AJ, Knight MR. Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. Plant Cell 1996; 8:489–503.

    Article  PubMed  CAS  Google Scholar 

  25. Pauly N, Knight MR, Thuleau P, Van der Luit AH, Moreau M, Trewavas AJ, Ranjeva R, Mazars C. Control of free calcium in plant cell nuclei. Nature 2000; 405:754–755.

    Article  PubMed  CAS  Google Scholar 

  26. Brini M, Pinton P, Pozzan T, Rizzuto R. Targeted recombinant aequorins: Tools for monitoring Ca2+ in the various compartments of a living cell. Micros Res Tech 1999; 46:380–389.

    Article  CAS  Google Scholar 

  27. Di Vergilio F, Steinberg TH, Silverstein SC. Organic anion transport inhibitors to facilitate measurement of cytosolic free Ca2+ with fura-2. Methods Cell Biol 1989; 31:453–462.

    Article  Google Scholar 

  28. Thomas D, Tovey SC, Collins TJ, Bootman MD, Berridge MJ, Lipp P. A comparison of fluorescent Ca++ indicator properties and their use in measuring elementary and global signals. Cell Calcium 2000; 4:213–233.

    Article  Google Scholar 

  29. Baubet V, Le Mouellic H, Campbell AK, Lucas-Meunier E, Fossier P, Brúlet P. Chimeric green fluorescent proteinaequorin as bioluminescent Ca2+ reporters at the single-cell level. Proc Natl Acad Sci USA 2000; 97:7260–7265.

    Article  PubMed  CAS  Google Scholar 

  30. Knight MR, Smith SM, Trewavas AJ. Wind-induced plant motion immediately increases cytosolic calcium. Proc Natl Acad Sci USA 1992; 89:4967–4971.

    Article  PubMed  CAS  Google Scholar 

  31. Plieth C, Hansen U-P, Knight H, Knight MR. Temperature sensing by plants: the primary characteristics of signal perception and calcium response. Plant J 1999; 18:491–497.

    Article  PubMed  CAS  Google Scholar 

  32. Gong M, Van der Luit AH, Knight MR, Trewavas AJ. Heat-shock-induced changes in intracellular Ca2+ level in tobacco seedlings in relation to thermotolerance. Plant Physiol 1998; 116:429–437.

    Article  CAS  Google Scholar 

  33. Lewis BD, Karlin-Neumann G, Davis RW, Spalding EP. Ca2+-activated anion channels and membrane depolarizations induced by blue light and cold in Arabidopsis seedlings. Plant Physiol 1997; 114:1327–1334.

    Article  PubMed  CAS  Google Scholar 

  34. Baum G, Long JC, Jenkins GI, Trewavas AJ. Stimulation of the blue light phototropic receptor NPH1 causes a transient increase in cytosolic Ca2+. Proc Natl Acad Sci USA 1999; 96:13554–13559.

    Article  PubMed  CAS  Google Scholar 

  35. 35. Sai J, Johnson CH. Dark-stimulated calcium ion fluxes in the chloroplast stroma and cytosol. Plant Cell 2002; 14:1279–1291.

    Article  PubMed  CAS  Google Scholar 

  36. Knight H, Trewavas AJ, Knight MR. Calcium signalling in Arabidopsis thaliana responding to drought and salinity. Plant J 1997; 12:1067–1078.

    Article  PubMed  CAS  Google Scholar 

  37. Cessna SG, Chandra S, Low PS. Hypo-osmotic shock of tobacco cells stimulates Ca2+ fluxes deriving first from external and then internal Ca2+ stores. J Biol Chem 1998; 273:27286–27291.

    Article  PubMed  CAS  Google Scholar 

  38. Johnson CH, Knight MR, Kondo T, Masson PH, Sedbrook JC, Haley A, Trewavas AJ. Circadian oscillations of cytosolic and chloroplastic free calcium in plants. Science 1995; 269:1863–1865.

    Article  PubMed  CAS  Google Scholar 

  39. Sedbrook JC, Kronebusch PJ, Borisy GG, Trewavas AJ, Masson PH. Transgenic aequorin reveals organ-specific cytosolic Ca2+ responses to anoxia in Arabidopsis seedlings. Plant Physiol 1996; 111:243–257.

    Article  PubMed  CAS  Google Scholar 

  40. Price AH, Taylor A, Ripley SJ, Griffith A, Trewavas AJ, Knight MR. Oxidative signals in tobacco increase cytosolic calcium. Plant Cell 1994; 6:1301–1310.

    Article  PubMed  CAS  Google Scholar 

  41. Clayton H, Knight MR, Knight H, McAinsh MR, Hetherington AM. Dissection of the ozone-induced calcium signature. Plant J 1999; 17:575–579.

    Article  PubMed  CAS  Google Scholar 

  42. Plieth C, Trewavas AJ. Reorientation of seedlings in the earth’s gravitational field induces cytosolic calcium transients. Plant Physiol 2002; 129:786–796.

    Article  PubMed  CAS  Google Scholar 

  43. Plieth C, Sattelmacher B, Hansen U-P, Knight MR. Low pH-mediated elevations in cytosolic calcium are inhibited by aluminium: a potential mechanism for aluminium toxicity. Plant J 1999; 18:643–650.

    Article  PubMed  CAS  Google Scholar 

  44. Plieth C (2001). Plant calcium signaling and monitoring: pros and cons and recent experimental approaches. Protoplasma 2001; 218:1–23.

    Article  PubMed  CAS  Google Scholar 

  45. Plieth C, Sattelmacher B, Knight MR. Ammonium uptake and cellular alkalinisation in roots of Arabidopsis thaliana: the involvement of cytoplasmic calcium. Physiol Plant 2000; 110:518–523.

    CAS  Google Scholar 

  46. Chandra S, Stennis MJ, Low PS. Measurement of Ca2+ fluxes during elicitation of the oxidative burst in aequorin-transformed tobacco cells. J Biol Chem 1997; 272:28274–28280.

    Article  PubMed  CAS  Google Scholar 

  47. Mithöfer A, Fliegmann J, Daxberger A, Ebel C, Neuhaus-Url G, Bhagwat AA, Keister DL, Ebel J. Induction of H2O2 synthesis by β-glucan elicitors in soybean is independent of cytosolic calcium transients. FEBS Lett 2001; 508:191–195.

    Article  PubMed  Google Scholar 

  48. Müller J, Staehelin C, Xie Z-P, Neuhaus-Url G, Boller T. NOD factors and chitooligomers elicit an increase in cytosolic calcium in aequorin-expressing soybean cells. Plant Physiol 2000; 124:733–740.

    Article  PubMed  Google Scholar 

  49. Wood NT, Allan AC, Haley A, Viry-Moussaid M, Trewavas AJ. The characterization of differential calcium signaling in tobacco guard cells. Plant J 2000; 24:335–344.

    Article  PubMed  CAS  Google Scholar 

  50. Furuichi T, Mori IC, Takahashi K, Muto S. Sugar-induced increase in cytosolic Ca2+ in Arabidopsis thaliana whole plants. Plant Cell Physiol 2001; 42:1149–1155.

    Article  PubMed  CAS  Google Scholar 

  51. Dennison KL, Spalding EP. Glutamate-gated calcium fluxes in Arabidopsis. Plant Physiol 2000; 124:1511–1514.

    Article  PubMed  CAS  Google Scholar 

  52. 52.Volotovski ID, Sokolovsky SG, Molchan OV, Knight MR. Second messengers mediate increases in cytosolic calcium in tobacco protoplasts. Plant Physiol 1998; 117:1023–1030.

    Article  PubMed  CAS  Google Scholar 

  53. Takahashi K, Isobe M, Muto S. Mastoparan induces an increase in cytosolic calcium ion concentration and subsequent activation of protein kinases in tobacco suspension culture cells. Biochim Biophys Acta 1998; 1401:339–346.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Mithöfer.

Additional information

Published: December 9, 2002

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mithöfer, A., Mazars, C. Aequorin-based measurements of intracellular Ca2+-signatures in plant cells. Biol Proced Online 4, 105–118 (2002). https://doi.org/10.1251/bpo40

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1251/bpo40

Indexing terms