Skip to main content


Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Aequorin-based measurements of intracellular Ca2+-signatures in plant cells


Due to the involvement of calcium as a main second messenger in the plant signaling pathway, increasing interest has been focused on the calcium signatures supposed to be involved in the patterning of the specific response associated to a given stimulus. In order to follow these signatures we described here the practical approach to use the non-invasive method based on the aequorin technology. Besides reviewing the advantages and disadvantages of this method we report on results showing the usefulness of aequorin to study the calcium response to biotic (elicitors) and abiotic stimuli (osmotic shocks) in various compartments of plant cells such as cytosol and nucleus.


  1. 1.

    Hepler PK, Wayne RO. Calcium and plant development. Ann Rev Plant Physiol 1985; 36:397–439.

  2. 2.

    Sanders D, Brownlee C, Harper JF. Communicating with Calcium. Plant Cell 1999; 11:691–706.

  3. 3.

    McAinsh MR, Hetherington AM. Encoding specificity in calcium signalling systemsTrends Plant Sci 1998; 3:32–36.

  4. 4.

    Trewavas AJ, Malho R. Ca2+ signalling in plant cells: the big network! Curr. Opin. Plant Biol. 1998; 1:428–433.

  5. 5.

    Mithöfer A, Ebel J, Bhagwat AA, Boller T, Neuhaus-Url G. Transgenic aequorin monitors cytosolic calcium transients in soybean cells challenged with β-glucan or chitin elicitors. Planta 1999; 207:566–574.

  6. 6.

    Blume B, Nürnberger T, Nass N, Scheel D. Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley. Plant Cell 2000; 12:1425–1440.

  7. 7.

    Allen GJ, Chu SP, Schumacher K, Shimazaki CT, Vafeados D, Kemper A, Hawke SD, Tallman G, Tsien RY, Harper JF, Chory J, Schroeder JI. Alteration of stimulus-specific oscillations and stomatal closing in Arabidopsis det 3 mutant. Science 2000; 289:2338–2342.

  8. 8.

    Allen GJ, Chu SP, Harrington CL, Schumacher K, Hooffmann T, Tang YY, Grill E, Schroeder JI. A defined range of guard cell calcium oscillation parameters encodes stomatal movements. Nature 2001; 411: 1053–1057.

  9. 9.

    Jaffe LF. Calcium explosions as trigger of development. Ann NY Acad Sci 1980; 339:86–101.

  10. 10.

    Felle H. Ca2+-selective microelectrodes and their application to plant cells and tissues. Plant Physiol 1989;91: 1239–1242.

  11. 11.

    Rudd JJ, Franklin-Tong VE. Unravelling response-specificity in Ca2+ signalling pathways in plant cells. New Phytol 2001; 151:7–33.

  12. 12.

    Cobbold PH, Rink TJ. Fluorescence and bioluminescence measurements of cytoplasmic free calcium. Biochem J 1987; 248:313–328.

  13. 13.

    Kendall J, Badminton MN. Aequorea victoria bioluminescence moves into an exciting new era. TIBTECH 1998; 16:216–224.

  14. 14.

    Pauly N, Knight MR, Thuleau P, Graziana A, Muto S, Ranjeva R, Mazars C. The nucleus together with the cytosol generates patterns of specific cellular calcium signatures in tobacco suspension culture cells. Cell Calcium 2001; 30:413–421.

  15. 15.

    Badminton MN, Kendall JM, Sala-Newby G, Campbell AK. Nucleoplasmin-targeted aequorin provides evidence for a nuclear calcium barrier. Exp Cell Res 1995; 216:236–243.

  16. 16.

    Takahashi K, Isobe M, Knight MR, Trewavas AJ, Muto S. Hypoosmotic shock induces increases in cytosolic Ca2+ in tobacco suspension-culture cells. Plant Physiol 1997; 113:587–594.

  17. 17.

    Thion L, Mazars C, Thuleau P, Graziana A, Rossignol M, Moreau M, Ranjeva R. Activation of plasma membrane voltage-dependent calcium-permeable channels by disruption of microtubules in carrot cells. FEBS Lett 1996; 393:13–18.

  18. 18.

    Allen DG, Blinks JR, Prendergast FG. Aequorin luminescence: relation of light emission to calcium concentration — a calcium-independent component. Science 1977; 195:996–998.

  19. 19.

    van der Luit AH, Olivari C, Haley A, Knight MR, Trewavas AJ. Distinct calcium signaling pathways regulate calmodulin gene expression in tobacco. Plant Physiol 1999; 121:705–714.

  20. 20.

    Moyen C, Hammond-Kosack JE, Jones J, Knight MR, Johannes E. Systemin triggers an increase of cytoplasmic calcium in tomato mesophyll cells: Ca2+ mobilization from intra- and extra-cellular compartments. Plant Cell Environ 1998; 21:1101–1111.

  21. 21.

    Prasher D, McCann RO, Cormier MJ. Cloning and expression of the cDNA coding for aequorin, a bioluminescent calcium-binding protein. Biochem Biophys Res Commun 1985; 126:1259–1268.

  22. 22.

    Knight MR, Campbell AK, Smith SM, Trewavas AJ. Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature 1991; 352:524–526.

  23. 23.

    Ebel J, Mithöfer A. Early events in the elicitation of plant defence. Planta 1998; 206:335–348.

  24. 24.

    Knight H, Trewavas AJ, Knight MR. Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. Plant Cell 1996; 8:489–503.

  25. 25.

    Pauly N, Knight MR, Thuleau P, Van der Luit AH, Moreau M, Trewavas AJ, Ranjeva R, Mazars C. Control of free calcium in plant cell nuclei. Nature 2000; 405:754–755.

  26. 26.

    Brini M, Pinton P, Pozzan T, Rizzuto R. Targeted recombinant aequorins: Tools for monitoring Ca2+ in the various compartments of a living cell. Micros Res Tech 1999; 46:380–389.

  27. 27.

    Di Vergilio F, Steinberg TH, Silverstein SC. Organic anion transport inhibitors to facilitate measurement of cytosolic free Ca2+ with fura-2. Methods Cell Biol 1989; 31:453–462.

  28. 28.

    Thomas D, Tovey SC, Collins TJ, Bootman MD, Berridge MJ, Lipp P. A comparison of fluorescent Ca++ indicator properties and their use in measuring elementary and global signals. Cell Calcium 2000; 4:213–233.

  29. 29.

    Baubet V, Le Mouellic H, Campbell AK, Lucas-Meunier E, Fossier P, Brúlet P. Chimeric green fluorescent proteinaequorin as bioluminescent Ca2+ reporters at the single-cell level. Proc Natl Acad Sci USA 2000; 97:7260–7265.

  30. 30.

    Knight MR, Smith SM, Trewavas AJ. Wind-induced plant motion immediately increases cytosolic calcium. Proc Natl Acad Sci USA 1992; 89:4967–4971.

  31. 31.

    Plieth C, Hansen U-P, Knight H, Knight MR. Temperature sensing by plants: the primary characteristics of signal perception and calcium response. Plant J 1999; 18:491–497.

  32. 32.

    Gong M, Van der Luit AH, Knight MR, Trewavas AJ. Heat-shock-induced changes in intracellular Ca2+ level in tobacco seedlings in relation to thermotolerance. Plant Physiol 1998; 116:429–437.

  33. 33.

    Lewis BD, Karlin-Neumann G, Davis RW, Spalding EP. Ca2+-activated anion channels and membrane depolarizations induced by blue light and cold in Arabidopsis seedlings. Plant Physiol 1997; 114:1327–1334.

  34. 34.

    Baum G, Long JC, Jenkins GI, Trewavas AJ. Stimulation of the blue light phototropic receptor NPH1 causes a transient increase in cytosolic Ca2+. Proc Natl Acad Sci USA 1999; 96:13554–13559.

  35. 35.

    35. Sai J, Johnson CH. Dark-stimulated calcium ion fluxes in the chloroplast stroma and cytosol. Plant Cell 2002; 14:1279–1291.

  36. 36.

    Knight H, Trewavas AJ, Knight MR. Calcium signalling in Arabidopsis thaliana responding to drought and salinity. Plant J 1997; 12:1067–1078.

  37. 37.

    Cessna SG, Chandra S, Low PS. Hypo-osmotic shock of tobacco cells stimulates Ca2+ fluxes deriving first from external and then internal Ca2+ stores. J Biol Chem 1998; 273:27286–27291.

  38. 38.

    Johnson CH, Knight MR, Kondo T, Masson PH, Sedbrook JC, Haley A, Trewavas AJ. Circadian oscillations of cytosolic and chloroplastic free calcium in plants. Science 1995; 269:1863–1865.

  39. 39.

    Sedbrook JC, Kronebusch PJ, Borisy GG, Trewavas AJ, Masson PH. Transgenic aequorin reveals organ-specific cytosolic Ca2+ responses to anoxia in Arabidopsis seedlings. Plant Physiol 1996; 111:243–257.

  40. 40.

    Price AH, Taylor A, Ripley SJ, Griffith A, Trewavas AJ, Knight MR. Oxidative signals in tobacco increase cytosolic calcium. Plant Cell 1994; 6:1301–1310.

  41. 41.

    Clayton H, Knight MR, Knight H, McAinsh MR, Hetherington AM. Dissection of the ozone-induced calcium signature. Plant J 1999; 17:575–579.

  42. 42.

    Plieth C, Trewavas AJ. Reorientation of seedlings in the earth’s gravitational field induces cytosolic calcium transients. Plant Physiol 2002; 129:786–796.

  43. 43.

    Plieth C, Sattelmacher B, Hansen U-P, Knight MR. Low pH-mediated elevations in cytosolic calcium are inhibited by aluminium: a potential mechanism for aluminium toxicity. Plant J 1999; 18:643–650.

  44. 44.

    Plieth C (2001). Plant calcium signaling and monitoring: pros and cons and recent experimental approaches. Protoplasma 2001; 218:1–23.

  45. 45.

    Plieth C, Sattelmacher B, Knight MR. Ammonium uptake and cellular alkalinisation in roots of Arabidopsis thaliana: the involvement of cytoplasmic calcium. Physiol Plant 2000; 110:518–523.

  46. 46.

    Chandra S, Stennis MJ, Low PS. Measurement of Ca2+ fluxes during elicitation of the oxidative burst in aequorin-transformed tobacco cells. J Biol Chem 1997; 272:28274–28280.

  47. 47.

    Mithöfer A, Fliegmann J, Daxberger A, Ebel C, Neuhaus-Url G, Bhagwat AA, Keister DL, Ebel J. Induction of H2O2 synthesis by β-glucan elicitors in soybean is independent of cytosolic calcium transients. FEBS Lett 2001; 508:191–195.

  48. 48.

    Müller J, Staehelin C, Xie Z-P, Neuhaus-Url G, Boller T. NOD factors and chitooligomers elicit an increase in cytosolic calcium in aequorin-expressing soybean cells. Plant Physiol 2000; 124:733–740.

  49. 49.

    Wood NT, Allan AC, Haley A, Viry-Moussaid M, Trewavas AJ. The characterization of differential calcium signaling in tobacco guard cells. Plant J 2000; 24:335–344.

  50. 50.

    Furuichi T, Mori IC, Takahashi K, Muto S. Sugar-induced increase in cytosolic Ca2+ in Arabidopsis thaliana whole plants. Plant Cell Physiol 2001; 42:1149–1155.

  51. 51.

    Dennison KL, Spalding EP. Glutamate-gated calcium fluxes in Arabidopsis. Plant Physiol 2000; 124:1511–1514.

  52. 52.

    52.Volotovski ID, Sokolovsky SG, Molchan OV, Knight MR. Second messengers mediate increases in cytosolic calcium in tobacco protoplasts. Plant Physiol 1998; 117:1023–1030.

  53. 53.

    Takahashi K, Isobe M, Muto S. Mastoparan induces an increase in cytosolic calcium ion concentration and subsequent activation of protein kinases in tobacco suspension culture cells. Biochim Biophys Acta 1998; 1401:339–346.

Download references

Author information

Correspondence to Axel Mithöfer.

Additional information

Published: December 9, 2002

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mithöfer, A., Mazars, C. Aequorin-based measurements of intracellular Ca2+-signatures in plant cells. Biol Proced Online 4, 105–118 (2002).

Download citation

Indexing terms

  • Cell culture
  • Calcium
  • Cytosol