Skip to main content

A proteomic approach based on peptide affinity chromatography, 2-dimensional electrophoresis and mass spectrometry to identify multiprotein complexes interacting with membrane-bound receptors

Abstract

There is accumulating evidence that membrane-bound receptors interact with many intracellular proteins. Multiprotein complexes associated with ionotropic receptors have been extensively characterized, but the identification of proteins interacting with G protein-coupled receptors (GPCRs) has so far only been achieved in a piecemeal fashion, focusing on one or two protein species. We describe a method based on peptide affinity chromatography, two-dimensional electrophoresis, mass spectrometry and immunoblotting to identify the components of multiprotein complexes interacting directly or indirectly with intracellular domains of GPCRs or, more generally, any other membrane-bound receptor. Using this global approach, we have characterized multiprotein complexes that bind to the carboxy-terminal tail of the 5-hydroxytryptamine type 2C receptor and are important for its subcellular localization in CNS cells (Bécamel et al., EMBO J., 21(10): 2332, 2002).

References

  1. 1.

    Husi H, Ward MA, Choudhary JS, Blackstock WP, Grant SG. Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nat Neurosci 2000;3:661–669.

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Kim M, Jiang LH, Wilson HL, North RA, Surprenant A. Proteomic and functional evidence for a P2X(7) receptor signalling complex. Embo J 2001;20:6347–6358.

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Brzostowski JA, Kimmel AR. Signaling at zero G: G-protein-independent functions for 7-TM receptors. Trends Biochem Sci 2001;26:291–297.

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Milligan G, White J. Protein-protein interactions at G-protein-coupled receptors. Trends Pharmacol Sci 2001;22:513–518.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Brady AE, Limbird LE. G protein-coupled receptor interacting proteins: emerging roles in localization and signal transduction. Cell Signal 2002;14:297–309.

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Bockaert J, Claeysen S, Bécamel C, Pinloche S, Dumuis A. G protein-coupled receptors: dominant players in cell-cell communication. Int Rev Cytol 2002;212:63–132.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Sheng M, Sala C. PDZ domains and the organization of supramolecular complexes. Annu Rev Neurosci 2001;24:1–29.

    PubMed  Article  CAS  Google Scholar 

  8. 8.

    Hall RA, Premont RT, Chow CW, Blitzer JT, Pitcher JA, Claing A, Stoffel RH, Barak LS, Shenolikar S, Weinman EJ, Grinstein S, Lefkowitz RJ. The beta2- adrenergic receptor interacts with the Na+/H+-exchanger regulatory factor to control Na+/H+ exchange. Nature 1998;392:626–630.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Ullmer C, Schmuck K, Figge A, Lubbert H. Cloning and characterization of MUPP1, a novel PDZ domain protein. FEBS Lett 1998;424:63–68.

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Zitzer H, Honck HH, Bachner D, Richter D, Kreienkamp HJ. Somatostatin receptor interacting protein defines a novel family of multidomain proteins present in human and rodent brain. J Biol Chem 1999b;274:32997–33001.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Raymond JR, Mukhin YV, Gelasco A, Turner J, Collinsworth G, Gettys TW, Grewal JS, Garnovskaya MN. Multiplicity of mechanisms of serotonin receptor signal transduction. Pharmacol Ther 2001;92:179–212.

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Bécamel C, Alonso G, Galeotti N, Demey E, Jouin P, Ullmer C, Dumuis A, Bockaert J, Marin P. Synaptic multiprotein complexes associated with 5-HT(2C) receptors: a proteomic approach. Embo J 2002;21:2332–2342.

    PubMed  Article  Google Scholar 

  13. 13.

    Misawa H, Kawasaki Y, Mellor J, Sweeney N, Jo K, Nicoll RA, Bredt DS. Contrasting localizations of MALS/LIN-7 PDZ proteins in brain and molecular compensation in knockout mice. J Biol Chem 2001;276:9264–9272.

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Bécamel C, Figge A, Poliak S, Dumuis A, Peles E, Bockaert J, Lubbert H, Ullmer C. Interaction of serotonin 5-hydroxytryptamine type 2C receptors with PDZ10 of the multi-PDZ domain protein MUPP1. J Biol Chem 2001;276:12974–12982.

    PubMed  Article  Google Scholar 

  15. 15.

    Laoudj-Chenivesse D, Marin P, Bennes R, Tronel-Peyroz E, Leterrier F. High performance two-dimensional gel electrophoresis using a wetting agent Tergitol(R) NP7. Proteomics 2002;2:481–485.

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Shevchenko A, Wilm M, Vorm O, Mann M. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 1996;68:850–858.

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Lee K, Bae D, Lim D. Evaluation of parameters in peptide mass fingerprinting for protein identification by MALDITOF mass spectrometry. Mol Cells 2002;13:175–184.

    PubMed  CAS  Google Scholar 

  18. 18.

    Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 1988;60:2299–2301.

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Garin J, Diez R, Kieffer S, Dermine JF, Duclos S, Gagnon E, Sadoul R, Rondeau C, Desjardins M. The phagosome proteome: insight into phagosome functions. J Cell Biol 2001;152:165–180.

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Mann M, Wilm M. Error-tolerant identification of peptides in sequence databases by peptide sequence tags. Anal Chem 1994;66:4390–4399.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Mann M, Hendrickson RC, Pandey A. Analysis of Proteins and Proteomes by Mass Spectrometry. Annu Rev Biochem 2001;70:437–473.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Ficarro SB, McCleland ML, Stukenberg PT, Burke DJ, Ross MM, Shabanowitz J, Hunt DF, White FM. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol 2002;20:301–305.

    PubMed  Article  CAS  Google Scholar 

  23. 23.

    Jo K, Derin, R, Li, M, Bredt, DS. Characterization of MALS/Velis-1, -2, and -3: a family of mammalian LIN- 7 homologs enriched at brain synapses in association with the postsynaptic density-95/NMDA receptor postsynaptic complex. J Neurosci 1999;19:4189–4199.

    PubMed  CAS  Google Scholar 

  24. 24.

    Butz S, Okamoto, M, Südhof, TC. A tripartite protein complex with the potential to couple synaptic vesicle exocytosis to cell adhesion in brain. Cell 1998;94:773–782.

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Borg JP, Straight, SW, Kaech, SM, de Taddeo-Borg, M, Kroon, DE, Karnak, D, Turner, RS, Kim, SK, Margolis, B. Identification of an evolutionarily conserved heterotrimeric protein complex involved in protein targeting. J Biol Chem 1998;273:31633–31636.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Carine Bécamel or Philippe Marin.

Additional information

Published: December 9, 2002

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bécamel, C., Galéotti, N., Poncet, J. et al. A proteomic approach based on peptide affinity chromatography, 2-dimensional electrophoresis and mass spectrometry to identify multiprotein complexes interacting with membrane-bound receptors. Biol Proced Online 4, 94–104 (2002). https://doi.org/10.1251/bpo39

Download citation

Indexing terms

  • proteomics
  • spectrum analysis, mass