Skip to main content

Promoter analysis by saturation mutagenesis


Gene expression and regulation are mediated by DNA sequences, in most instances, directly upstream to the coding sequences by recruiting transcription factors, regulators, and a RNA polymerase in a spatially defined fashion. Few nucleotides within a promoter make contact with the bound proteins. The minimal set of nucleotides that can recruit a protein factor is called a cis-acting element. This article addresses a powerful mutagenesis strategy that can be employed to define cis-acting elements at a molecular level. Technical details including primer design, saturation mutagenesis, construction of promoter libraries, phenotypic analysis, data analysis, and interpretation are discussed.


bop :



  1. Baliga NS, DasSarma S. Saturation mutagenesis of the TATA box and upstream activator sequence in the haloarchaeal bop gene promoter. J Bacteriol. 1999;181(8):2513–2518.

    Google Scholar 

  2. Baliga NS, Dassarma S. Saturation mutagenesis of the haloarchaeal bop gene promoter: identification of DNA supercoiling sensitivity sites and absence of TFB recognition element and UAS enhancer activity. Mol Microbiol. 2000;36(5):1175–1183.

    Article  Google Scholar 

  3. Barik S, Galinski MS. “Megaprimer” method of PCR: increased template concentration improves yield. Biotechniques. 1991;10(4):489–490.

    Google Scholar 

  4. Blattner FR. Direct amplification of the entire ITS region from poorly preserved plant material using recombinant PCR. Biotechniques. 1999;27(6):1180–1186.

    PubMed  CAS  Google Scholar 

  5. Chrzanowska-Lightowlers ZM, Temperley RJ, McGregor A, Bindoff LA, Lightowlers RN. Conversion of a reporter gene for mitochondrial gene expression using iterative mega-prime PCR. Gene. 1999;230(2):241–247.

    Article  Google Scholar 

  6. Colgan J, Manley JL. Cooperation between core promoter elements influences transcriptional activity in vivo. Proc Natl Acad Sci U S A. 1995;92(6):1955–1959.

    Article  Google Scholar 

  7. Corona V, Aracri B, Kosturkova G, et al. Regulation of a carotenoid biosynthesis gene promoter during plant development. Plant J. 1996;9(4):505–512.

    Article  Google Scholar 

  8. Danner S, Soppa J. Characterization of the distal promoter element of halobacteria in vivo using saturation mutagenesis and selection. Mol Microbiol. 1996;19(6): 1265–1276.

    Article  Google Scholar 

  9. Hain J, Reiter WD, Hudepohl U, Zillig W. Elements of an archaeal promoter defined by mutational analysis. Nucleic Acids Res. 1992;20(20):5423–5428.

    Article  Google Scholar 

  10. Patenge N, Haase A, Bolhuis H, Oesterhelt D. The gene for a halophilic beta-galactosidase (bgaH) of Haloferax alicantei as a reporter gene for promoter analyses in Halobacterium salinarum. Mol Microbiol. 2000;36(1):105–113.

    Article  Google Scholar 

  11. Palmer JR, Daniels CJ. In vivo definition of an archaeal promoter. J Bacteriol. 1995;177 (7):1844–1849.

    PubMed  CAS  Google Scholar 

  12. Reiter WD, Hudepohl U, Zillig W. Mutational analysis of an archaebacterial promoter: essential role of a TATA box for transcription efficiency and start-site selection in vitro. Proc Natl Acad Sci U S A. 1990;87(24):9509–9513.

    Article  PubMed  CAS  Google Scholar 

  13. Yang CF, Kim JM, Molinari E, DasSarma S. Genetic and topological analyses of the bop promoter of Halobacterium halobium: stimulation by DNA supercoiling and non-B-DNA structure. J Bacteriol. 1996;178 (3):840–845.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Nitin S. Baliga.

Additional information

Published: December 22, 2001

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Baliga, N.S. Promoter analysis by saturation mutagenesis. Biol Proced Online 3, 64–69 (2001).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI:

Indexing terms