- Published:
Yeast two-hybrid: State of the art
Biological Procedures Online volume 2, pages 1–38 (1999)
Abstract
Genome projects are approaching completion and are saturating sequence databases. This paper discusses the role of the two-hybrid system as a generator of hypotheses. Apart from this rather exhaustive, financially and labour intensive procedure, more refined functional studies can be undertaken. Indeed, by making hybrids of two-hybrid systems, customised approaches can be developed in order to attack specific function-related problems. For example, one could set-up a “differential” screen by combining a forward and a reverse approach in a three-hybrid set-up. Another very interesting project is the use of peptide libraries in two-hybrid approaches. This could enable the identification of peptides with very high specificity comparable to “real” antibodies. With the technology available, the only limitation is imagination.
References
Choi K.Y., Satterberg B., Lyons D.M., Elion E.A. 1994. Ste5 tethers multiple protein kinases in the MAP kinase cascade required for mating in S. cerevisiae. Cell 78, 499–512.
Kischkel F.C., Hellbardt S., Behrmann I., Germer M., Pawlita M., Krammer P.H., Peter M.E. 1995. Cytotoxicity-dependent APO-1 Fas/CD95-associated proteins form a death-inducing signaling complex DISC with the receptor. EMBO J. 14, 5579–5588.
Phizicky E.M., Fields S. 1995. Protein-protein interactions: methods for detection and analysis. Microbiol.Rev. 59, 94–123.
Hope I.A., Struhl K. 1986. Functional dissection of a eukaryotic transcriptional activator protein, GCN4 of yeast. Cell 46, 885–894.
Keegan L., Gill G., Ptashne M. 1986. Separation of DNA binding from the transcription-activating function of a eukaryotic regulatory protein. Science 231, 699–704.
Brent R., Ptashne M. 1985. A eukaryotic transcriptional activator bearing the DNA specificity of a prokaryotic repressor. Cell 43, 729–736.
Ma J., Ptashne M. 1988. Converting a eukaryotic transcriptional inhibitor into an activator. Cell 55, 443–446.
Fields S., Song O.K. 1989. A novel genetic system to detect protein-protein interactions. Nature 340, 245–246.
Fields S., Sternglanz R. 1994. The two-hybrid system: an assay for protein-protein interactions. Trends Genet. 10, 286–292.
Young K.H., Ozenberger B.A. 1995. Investigation of ligand binding to members of the cytokine receptor family within a microbial system. Ann.N.Y.Acad.Sci. 766, 279–281.
Kajkowski E.M., Price L.A., Pausch M.H., Young K.H., Ozenberger B.A. 1997. Investigation of growth hormone releasing hormone receptor structure and activity using yeast expression technologies. J.Recept.Signal.Transduct.Res. 17, 293–303.
Denis C.L., Ferguson J., Young E.T. 1983. mRNA levels for the fermentative alcohol dehydrogenase of Saccharomyces cerevisiae decrease upon growth on a nonfermentable carbon source. J.Biol.Chem. 258, 1165–1171.
Tornow J., Santangelo G.G. 1990. Efficient expression of Saccharomyces cerevisiae glycolytic gene ADH1 is dependent upon a cis-acting regulatory element UAS-PRG found initially in genes encoding ribosomal proteins. Gene 90, 79–85.
Ruohonen L., Penttila M., Keranen S. 1991. Optimization of Bacillus amylase Production by Saccharomyces cerevisiae. Yeast 7, 337–346.
Legrain P., Dokhelar M.C., Transy C. 1994. Detection of protein-protein interactions using different vectors in the two-hybrid system. Nucleic Acids Res. 22, 3241–3242.
Fradet Y., Tardif M., Parent-Vaugeois C. 1985. The use of multiparameter flow cytometry in the detection and evaluation of human bladder tumors. Union.Med.Can. 114, 778–780.
Parent S.A., Fenimore C.M., Bostian K.A. 1985. Vector systems for the expression, analysis and cloning of DNA sequences in S. cerevisiae. Yeast 1, 83–138.
Green N., Alexander H., Olson A., Alexander S., Shinick T.M., Sutcliffe J.G., Lerner R.A. 1982. Immunogenic structure of the influenza virus hemagglutinin. Cell 28, 477–487.
Kaufer A.F., Fried H.M., Schwindinger W.F., Jasin M., Warner J.R. 1983. Cycloheximide resistance in yeast: the gene and its protein. Nucleic Acids Res. 11, 3123
Langlands K., Prochownik E.V. 1997. A rapid method for the preparation of yeast lysates that facilitates the immunodetection of proteins generated by the yeast two-hybrid system. Anal.Biochem. 249, 250–252.
Beranger F., Aresta S., de Gunzburg J., Camonis J. 1997. Getting more from the two-hybrid system: N-terminal fusions to LexA are efficient and sensitive baits for two-hybrid studies. Nucleic Acids Res. 25, 2035–2036.
Johnston S.A., Zavortink M.J., Debouck C., Hopper J.E. 1986. Functional domains of the yeast regulatory protein GAL4. Proc.Natl.Acad.Sci.U.S.A. 83, 6553–6557.
Marmorstein R., Carey M., Ptashne M., Harrison S.C. 1992. DNA recognition by GAL4: structure of a protein-DNA complex. Nature 356, 408–414.
Carey M., Kakidani H., Leatherwood J., Mostashari F., Ptashne M. 1989. An amino-terminal fragment of GAL4 binds DNA as a dimer. J.Mol.Biol. 209, 423–432.
Silver P.A., Keegan L.P., Ptashne M. 1984. Amino terminus of the yeast GAL4 gene product is sufficient for nuclear localization. Proc.Natl.Acad.Sci.U.S.A. 81, 5951–5955.
Silver P.A., Chiang A., Sadler I. 1988. Mutations that alter both localization and production of a yeast nuclear protein. Genes and Dev. 2, 707–717.
Silver P.A., Brent R., Ptashne M. 1986. DNA binding is not sufficient for nuclear localization of regulatory proteins in Saccharomyces cerevisiae. Mol.Cell.Biol. 6, 4763–4766.
Brent R., Ptashne M. 1984. A bacterial repressor protein or a yeast transcriptional terminator can block upstream activation of a yeast gene. Nature 612–615.
Dagher M.C., Filhol Cochet O. 1997. Making hybrids of two-hybrid systems. Biotechniques 22, 916–8,920–2.
Guthrie C., Fink G.R. 1991. Guide to yeast genetics and molecular biology. Methods Enzym. 194, 1–932.
Giniger E., Ptashne M. 1988. Cooperative DNA binding of the yeast transcriptional activator GAL4. Proc.Natl.Acad.Sci.U.S.A. 85, 382–386.
Tirode F., Malaguti C., Romero F., Attar R., Camonis J., Egly J.M. 1997. A conditionally expressed third partner stabilizes or prevents the formation of a transcriptional activator in a three-hybrid system. J.Biol.Chem. 272, 22995–22999.
Ebina Y., Takahara Y., Kishi F., Nakazawa A. 1983. LexA protein is a repressor of colicin E1 gene. J.Biol.Chem. 258, 13258–13261.
Estojak J., Brent R., Golemis E.A. 1995. Correlation of two-hybrid affinity data with in vitro measurements. Mol.Cell.Biol. 15, 5820–5829.
West R.W.Jr., Yoccum R.R., Ptashne M. 1984. Saccharomyces cerevisiae GAL1-GAL10 divergent promotor region: location and function of the upstream activating sequence UASG. Mol.Cell.Biol. 2467–2478.
Gietz R.D., Schiestl R.H. 1991. Applications of high efficiency lithium acetate transformation of intact yeast cells using single-stranded nucleic acids as carrier. Yeast 7, 253–263.
Gietz R.D., St.Jean A., Woods R.A., Schiestl R.H. 1992. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 20, 1425
Gietz R.D., Schiestl R.H., Willems A.R., Woods R.A. 1995. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11, 355–360.
Gietz R.D. 1997. The Gietz Lab Yeast Transformation Home Page. http://www.umanitoba.ca/faculties/medicine/human_genetics/gietz/Trafo. html
Schenk J.A., Heymann S., Peters L.E., Micheel B. 1996. Screening for recombinant plasmids in yeast colonies of the two-hybrid system using PCR. Biotechniques 20, 812–4, 816.
Herskowitz I. 1988. Life cycle of the budding yeast Saccharomyces cerevisiae. Microbiol.Rev. 52, 536
Bartel P., Chien C.T., Sternglanz R., Fields S. 1993. Elimination of false positives that arise in using the two-hybrid system. Biotechniques 14, 920–924.
Golemis E.A., Khazak V. 1997. Alternative yeast two-hybrid systems. The interaction trap and interaction mating. Methods Mol.Biol. 63, 197–218.
Hengen P.N. 1997. False positives from the yeast two-hybrid system. Trends Biochem.Sci. 22, 33–34.
Golemis E. 1997. Lab of Erica Golemis. http://chaos.fccc.edu/research/labs/ golemis
Yavuzer U., Goding C.R. 1995. pWITCH: a versatile two-hybrid assay vector for the production of epitope/activation domain-tagged proteins both in vitro and in yeast. Gene 165, 93–96.
Wong C., Naumovski L. 1997. Method to screen for relevant yeast two-hybrid-derived clones by coimmunoprecipitation and colocalization of epitope-tagged fragments, application to Bcl-XL. Anal.Biochem. 252, 33–39.
Roder K.H., Wolf S.S., Schweizer M. 1996. Refinement of vectors for use in the yeast two-hybrid system. Anal.Biochem. 241, 260–262.
Le Douarin B., Pierrat B., vom Baur E., Chambon P., Losson R. 1995. A new version of the two-hybrid assay for detection of protein-protein interactions. Nucleic Acids Res. 23, 876–878.
Drees BL. 1999. Progress and variations in two-hybrid and three-hybrid technologies. Curr Opin Chem Biol. 3, 64–70.
Leanna C.A., Hannink M. 1996. The reverse two-hybrid system: a genetic scheme for selection against specific protein/protein interactions. Nucleic Acids Res. 24, 3341–3347.
Boeke J.D., LaCroute F., Fink G.R. 1984. A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol.Gen.Genet. 197, 345–346.
Shih H.M., Goldman P.S., DeMaggio A.J., Hollenberg S.M., Goodman R.H., Hoekstra M.F. 1996. A positive genetic selection for disrupting protein-protein interactions: identification of CREB mutations that prevent association with the coactivator CBP. Proc.Natl.Acad.Sci.U.S.A. 93, 13896–13901.
Vidal M., Brachmann R.K., Fattaey A., Harlow E., Boeke J.D. 1996a. Reverse two-hybrid and one-hybrid systems to detect dissociation of protein-protein and DNA-protein interactions. Proc.Natl.Acad.Sci.U.S.A. 93, 10315–10320.
Vidal M., Braun P., Chen E., Boeke J.D., Harlow E. 1996b. Genetic characterization of a mammalian protein-protein interaction domain by using a yeast reverse two-hybrid system. Proc.Natl.Acad.Sci.U.S.A. 93, 10321–10326.
Aronheim A. 551997a. Improved efficiency Sos recruitment system: expression of the mammalian GAP reduces isolation of Ras GTPase false positives. Nucleic Acids Res. 25, 3373–3374.
Aronheim A., Zandi E., Hennemann H., Elledge S.J., Karin M. 1997b. Isolation of an AP-1 Repressor by a Novel Method for Detecting Protein-Protein Interactions. Mol.Cell.Biol. 17, 3094–3102.
Johnsson N., Varhavsky A. 1994. Split ubiquitin as a sensor of protein interactions in vivo. Proc.Natl.Acad.Sci.U.S.A. 91, 10340–10344.
Buchert M., Schneider S., Adams M.T., Hefti H.P., Moelling K., Hovens C.M. 1997. Useful vectors for the two-hybrid system in mammalian cells. Biotechniques 23, 396–8, 400, 402.
Dixon E.P., Johnstone E.M., Liu X., Little S.P. 1997. An inverse mammalian two-hybrid system for secretase and other proteases. Anal.Biochem. 249, 239–241.
Osborne M.A., Dalton D., Kochan J.P. 1995. The yeast tribrid system-genetic detection of tansphosphorylated ITAM-SH2-interactions. Biotechnology 13, 1474–1478.
Zhang J., Lautar S. 1996. A yeast three-hybrid method to clone ternary protein complex components. Anal.Biochem. 242, 68–72.
Ozenberger B.A., Young K.H. 1995. Functional interaction of ligands and receptors of the hematopoietic superfamily in yeast. Mol.Endocrinol. 9, 1321–1329.
Licitra E.J., Liu J.O. 1996. A three-hybrid system for detecting small ligand-protein receptor interactions. Proc.Natl.Acad.Sci.U.S.A. 93, 12817–12821.
Putz U., Skehel P., Kuhl D. 1996. A tri-hybrid system for the analysis and detection of RNA-protein interactions. Nucleic Acids Res. 24, 4838–4040.
Sengupta D.J. 1996. Application of two-hybrid and three-hybrid technologies. EMBO Two-Hybrid Course, October 12, Munich.
Brachmann R.K., Boeke J.D. 1997. Tag games in yeast: the two-hybrid system and beyond. Curr.Op.Biotech. 561–568.
Van Criekinge W, van Gurp M, Decoster E, Schotte P, Van de Craen M, Fiers W, Vandenabeele P, Beyaert R 1998 Use of the yeast three-hybrid system as a tool to study caspases. Anal Biochem. 263, 62–64.
Van Aelst L., White M.A., Wigler M.H. 1994. Ras partners. Cold.Spring.Harb.Symp.Quant. Biol. 59, 181–186.
White M.A., Nicolette C., Minden A., Polverino A., Van Aelst L., Karin M., Wigler M.H. 1995. Multiple Ras functions can contribute to mammalian cell transformation. Cell 80, 533–541.
Khosravi-Far R., White M.A., Westwick J.K., Solski P.A., Chrzanowska-Wodnicka M., Van Aelst L., Wigler M.H., Der C.J. 1996. Oncogenic Ras activation of Raf/mitogen-activated protein kinase-independent pathways is sufficient to cause tumorigenic transformation. Mol.Cell.Biol. 16, 3923–3933.
Jessen T. 1996. Pharmaceutical applications of the interaction trap. EMBO Two-Hybrid Course, October 10, Munich.
Van Criekinge W., Cornelis S., Van de Craen M., Vandenabeele P., Fiers W. & Beyaert R. 1999. GAL4 is a substrate for caspases: implications for two-hybrid screening and other GAL4-based assays. Mol. Cell Biol. Res. Commun. 1, 158–161.
Fromont-Racine M., Rain J.C., Legrain P. 1997. Towards a functional analysis of the yeast genome through exhaustive two-hybrid screens. Nature Gen. 277–281.
Robzyk K, Kassir Y. 1992. A simple and highly efficient procedure for rescuing autonomous plasmids from yeast. Nucleic Acids Res 20, 3790.
James P, Halladay J, Craig EA 1996. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144, 1425–36.
Bartel PL, Roecklein JA, SenGupta D, Fields S 1996. A protein linkage map of Escherichia coli bacteriophage T7. Nat Genet 12, 72–77.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Van Criekinge, W., Beyaert, R. Yeast two-hybrid: State of the art. Biol Proced Online 2, 1–38 (1999). https://doi.org/10.1251/bpo16
Issue Date:
DOI: https://doi.org/10.1251/bpo16