Skip to main content

Addressing fluorogenic real-time qpcr inhibition using the novel custom excel file system ‘FocusField2-6GallupqPCRSet-upTool-001’ to attain consistently high fidelity qPCR reactions

Abstract

The purpose of this manuscript is to discuss fluorogenic real-time quantitative polymerase chain reaction (qPCR) inhibition and to introduce/define a novel Microsoft Excel-based file system which provides a way to detect and avoid inhibition, and enables investigators to consistently design dynamically-sound, truly LOG-linear qPCR reactions very quickly. The qPCR problems this invention solves are universal to all qPCR reactions, and it performs all necessary qPCR set-up calculations in about 52 seconds (using a pentium 4 processor) for up to seven qPCR targets and seventytwo samples at a time - calculations that commonly take capable investigators days to finish. We have named this custom Excel-based file system “FocusField2-6GallupqPCRSet-upTool-001” (FF2-6-001 qPCR set-up tool), and are in the process of transforming it into professional qPCR set-up software to be made available in 2007. The current prototype is already fully functional.

References

  1. Tichopad A, Didier A, Pfaffl MW. Inhibition of realtime RT-PCR quantification due to tissue-specific contaminants. Molecular Cellular Probes 2004; 18:45–50.

    Article  CAS  Google Scholar 

  2. Bustin SA. A-Z of Quantitative PCR. Bustin SA, editor. (IUL Biotechnology, No. 5), 1st ed. International University Line; August 2004. 882 pages.

  3. Wilson IG, Gilmour A, Cooper JE. Detection of toxigenic microorganisms in foods by PCR. In: Kroll RG, Gilmour A, Sussman M, editors. New Techniques in Food and Beverage Microbiology. London: Blackwell; 1993. pp. 163–172.

    Google Scholar 

  4. Starnbach MN, Falkow S, Tomkins SL. Speciesspecific detection of Legionella pneumophila in water by DNA amplification and hybridization. Journal of Clinical Microbiology 1989; 27:1257–1261.

    PubMed  CAS  Google Scholar 

  5. Wilson IG. Inhibition and facilitation of nucleic acid amplification. Applied and Environmental Microbiology 1997; 63:3741–3751.

    PubMed  CAS  Google Scholar 

  6. Rossen L, Norskov P, Holmstrom K, Rasmussen FO. Inhibition of PCR by components of food sample, microbial diagnostic assay and DNA-extraction solutions. International Journal of Food Microbiology 1992; 17:37–45.

    Article  PubMed  CAS  Google Scholar 

  7. Tichopad A, Pfaffl MW, Didier A. Tissue-specific expression pattern of bovine prion: quantification using real-time RT-PCR. Molecular and Cellular Probes 2003; 17:5–10.

    Article  PubMed  CAS  Google Scholar 

  8. Pfaffl MW, Lange IG, Daxenberger A, Meyer HH. Tissue-specific expression pattern of estrogen receptors (ER): quantification of ER alpha and ER beta mRNA with real-time RT-PCR. Acta Pathologica Microbiologica et Immunologica Scandinavica 2001; 109:345–355.

    CAS  Google Scholar 

  9. Rijpens NP, Jannes G, Van Asbroeck M, Rossau R, Herman LMF. Direct detection of Brucella spp. In raw milk by PCR and reverse hybridization with 16S–23S rRNA spacer probes. Applied Environmental Microbiology 1996; 62:1683–1688.

    CAS  Google Scholar 

  10. Thellin O, Zorzi W, Lakaye B, De Borman B, Coumans B, Hennen G, Grisar T, Igout A, Heinen E. Housekeeping genes as internal standards: use and limits. Journal of Biotechnology 1999; 75:291–295.

    Article  PubMed  CAS  Google Scholar 

  11. Schmittgen TD, Zakrajsek BA. Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR. Journal of Biochemical and Biophysical Methods 2000; 20:69–81.

    Article  Google Scholar 

  12. Suzuki T, Higgins PJ, Crawford DR. Control selection for RNA quantitation. BioTechniques 2000; 29:332–337.

    PubMed  CAS  Google Scholar 

  13. Lee J, Duncan A, Warrick S. Techniques for optimizing RT-PCR reactions. PharmaGenomics 2003; January: 50–55.

  14. Invitrogen Life Technologies TRIzol® Reagent product literature/insert. Cat. No. 15596-026, Form No. 18057N.

  15. Invitrogen Life Technologies Instruction Manual. SuperScript III CellsDirect cDNA Synthesis System (for Catalog Nos. 18080-200 and 18080-300) Version B, 25-0731 18 April 2005; 2. & Instruction Manual: SuperScript? III CellsDirect, cDNA Synthesis System Catalog Nos. 18080-200 and 18080-300, Version A, 14 May 2004, 25-0731, page vi).

  16. Gallup JM, Kawashima K, Lucero G, Ackermann MR. New quick method for isolating RNA from laser captured cells stained by immunofluorescent immunohistochemistry; RNA suitable for direct use in fluorogenic TaqMan one-step real-time RTPCR. Biol Proced Online 2005; 7:70–92.

    Article  PubMed  CAS  Google Scholar 

  17. Caverly JM, Diamond G, Gallup JM, Brogden KA, Dixon RA, Ackermann MR. Coordinated Expression of Tracheal Antimicrobial Peptide and Inflammatory Response Elements in the Lungs of Neonatal Calves and with Acute Bacterial Pneumonia. Inf Immun 2003; 71(5):2950–2955.

    Article  CAS  Google Scholar 

  18. Meyerholz DK, Gallup JM, Grubor BM, Evans RB, Tack BF, McCray PB Jr, Ackermann MR. Developmental expression and distribution of sheep b-defensin-2. Dev Comp Immun 2004; 28:171–178.

    Article  CAS  Google Scholar 

  19. Grubor BM, Gallup JM, Meyerholz DK, Crouch EC, Evans RB, Brogden KA, Lehmkuhl HD, Ackermann MR. Enhanced Surfactant Protein and Defensin mRNA Levels and Reduced Viral Replication during Parainfluenza Virus Type 3 Pneumonia in Neonatal Lambs. CDLI 2004; 11(3):599–607.

    PubMed  CAS  Google Scholar 

  20. Ackermann MR, Gallup JM, Zabner J, Evans RB, Brockus CW, Meyerholz DK, Grubor B, Brogden KA. Differential expression of sheep beta-defensin-1 and -2 and interleukin 8 during acute Mannheimia haemolytica pneumonia. Microbial Pathogenesis 2004; 37:21–27.

    Article  PubMed  CAS  Google Scholar 

  21. Meyerholz DK, Grubor B, Fach SJ, Sacco RE, Lehmkuhl HD, Gallup JM, Ackermann MR. Reduced Clearance of Respiratory Syncytial Virus in a Preterm Lamb Model. Microbes and Infection 2004; 6(14):1312–1319.

    Article  PubMed  Google Scholar 

  22. Meyerholz DK, Grubor B, Gallup JM, Lehmkuhl HD, Anderson RD, Lazic T, Ackermann MR. Adenovirus-Mediated Gene Therapy Enhances Parainfluenza Virus 3 Infection in Neonatal Lambs. J Clin Micro 2004; 42(10):4780–4787.

    Article  CAS  Google Scholar 

  23. Kawashima K, Meyerholz DK, Gallup JM, Grubor B, Lazic T, Lehmkuhl HD, Ackermann MR. Differential expression of ovine innate immune genes by preterm and neonatal lung epithelia infected with respiratory syncytial virus. Viral Immunology 2006; 19:316–323.

    Article  PubMed  CAS  Google Scholar 

  24. Meyerholz DK, Kawashima K, Gallup JM, Grubor B, Ackermann MR. Expression of select immune genes (surfactant proteins A and D, sheep beta defensin, and toll-like receptor 4) by respiratory epithelia is developmentally regulated in the preterm neonatal lamb. Dev Comp Immunol 2006; 30(11):1060–1069.

    Article  PubMed  CAS  Google Scholar 

  25. TaqMan® Universal PCR Master Mix Protocol. Applied Biosystems, 2002, Printed in the USA, 04/2002, Part Number 4304449 Rev. C.

  26. Stangegaard M, Hufva IH, Dufva M. Reverse transcription using random pentadecamer primers increases yield and quality of resulting cDNA. BioTechniques 2006; 40(5):649–657.

    Article  PubMed  CAS  Google Scholar 

  27. Dussault A-A, Pouliot M. Rapid and simple comparison of messenger RNA levels using real-time PCR. Biol Proced Online 2006; 8(1):1–10.

    Article  PubMed  CAS  Google Scholar 

  28. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001; 29:2002–2007.

    Article  Google Scholar 

  29. Gilsbach R, Kouta M, Bönisch H, Brüss M. Comparison of in vitro and in vivo reference genes for internal standardization of real-time PCR data. BioTechniques 2006; 40(2):173–177.

    Article  PubMed  CAS  Google Scholar 

  30. Burns MJ, Nixon GJ, Foy CA, Harris N. Standardisation of data from real-time quantitative PCR methods — evaluation of outliers and comparison of calibration curves. BMC Biotechnol 2005; 7:5–31.

    Google Scholar 

  31. Applied Biosystems User Bulletin #2.ABI PRISM 7700 Sequence Detection System, SUBJECT: Relative Quantitation of Gene Expression: Calculating the Input Amount. 2001, p. 8.

  32. Swillens S, Goffard J-C, Marechal Y, de Kerchove d’Exaerde A, Housni EH. Instant evaluation of the absolute initial number of cDNA copies from a single real-time PCR curve. Nucleic Acids Res 2004; 32(6):e53.

    Google Scholar 

  33. Peirson SN, Butler JN, Foster RG. Experimental validation of novel and conventional approaches to quantitative real-time PCR data analysis. Nucleic Acids Res 2003; 31(14):e73.

    Google Scholar 

  34. Broackes-Carter F, Mouchel N, Gill D, Hyde S, Bassett J, Harris A. Quantitative CFTR transcript analysis by TaqMan. Temporal regulation of CFTR expression during ovine lung development: implications for CF gene therapy. Hum Mol Genet 2002; 11:125–131.

    Article  PubMed  CAS  Google Scholar 

  35. CellsDirect™ One-Step qRT-PCR Kits for One-Step Real-Time Quantitative RT-PCR from cell lysate. Catalog Nos. 11753-100, 11753-500, 11754-100, 11754-500 Version A 28 November 2005;25-0870:9–26.

  36. Livak KJ, Schmittgen TD. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-ΔΔCT Method. Methods 2001; 25:402–408.

    Article  PubMed  CAS  Google Scholar 

  37. Bustin SA, Nolan T. Pitfalls of Quantitative Real-Time Reverse-Transcription Polymerase Chain Reaction. J Biomolecular Techniques 2004; 15:155–166.

    Google Scholar 

  38. Chandler DP, Wagnon CA, Bolton H Jr. Reverse Transcriptase (RT) Inhibition of PCR at Low Concentrations of Template and Its Implications for Quantitative RT-PCR. Appl Environ Biol 1998; 64(2):669–677.

    CAS  Google Scholar 

  39. Mocellin S, Rossi CR, Pilati P, Nitti D, Marincola MM. Quantitative real-time PCR: A Powerful Ally in Cancer Research. Trends Molec Med 2003; 9(5):189–195.

    Article  CAS  Google Scholar 

  40. Vandesompele J. Normalization of Gene Expression using Expressed Alu Repeat Elements qPCR. 2005 Symposium Proceedings ISBN 300016687.

  41. Buchanan FC, Littlejohn RP, Galloway SM, Crawford AM. Microsatellites and associated repetitive elements in the sheep genome. Mammalian Genome 1993; 4(5):258–264.

    Article  PubMed  CAS  Google Scholar 

  42. Primmer CR, Raudsepp T, Chowdhary BP, Møller AP, Ellegren H. Low Frequency of Microsatellites in the Avian Genome. Genome Res 1997; 7:471–482.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack M. Gallup.

Rights and permissions

Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Gallup, J.M., Ackermann, M.R. Addressing fluorogenic real-time qpcr inhibition using the novel custom excel file system ‘FocusField2-6GallupqPCRSet-upTool-001’ to attain consistently high fidelity qPCR reactions. Biol. Proced. Online 8, 87–153 (2006). https://doi.org/10.1251/bpo122

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1251/bpo122

Indexing terms